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Abstract - Mesh adaptation is essential for accurate computational fluid dynamics (CFD) simulations, especially when computational
resources are limited. In simulating the advection-diffusion equation using the finite volume method (FVM), mesh adaptation is often
necessary to accurately capture sharp gradients and complex flow features. Although the metric-based mesh adaptation used in this study
is highly effective with true errors, these are typically unavailable, requiring the use of error estimators. However, adjoint-based error
estimators, though effective, are computationally expensive as they require solving the larger adjoint system. To address this, an
inexpensive error estimator based on the gradient of the numerical solution and the embedded method is proposed. Specifically, the
central difference and upwind difference schemes are utilized for error estimation within this framework. Since errors are predominantly
influenced by sharp gradients in the scalar boundary layer, a target functional based on the product of the embedded error and the solution
gradient to compute the error estimator is proposed. Consequently, these proposed error estimators generate meshes closely resembling
those produced using true error values, effectively resolving the scalar boundary layer. As a result, the L2 and L∞ norms of the error
typically decrease with successive adaptation cycles. Furthermore, the L1, L2, and L∞ norms of error per element also reduce with
successive adaptation cycles. In conclusion, the proposed error estimator facilitates mesh adaptation without needing true errors or
computationally expensive adjoint-based error estimators, thus ensuring accurate numerical solutions, especially in scenarios with sharp
boundary layers.
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1. Introduction
NASA’s CFD Vision 2030 report [1] identifies mesh generation and adaptation as critical challenges to advance CFD

methodologies. Addressing these challenges is essential to accurately estimate the functional outputs, which requires
resolving all significant flow features. While uniform grid refinement can achieve this, it becomes prohibitively expensive
for complex geometries. In contrast, heuristic-based mesh refinement, which focuses on high-gradient areas, is more cost-
effective but does not guarantee convergence. Alternatively, manually generating grids tailored to specific flow features is
labour-intensive and suitable only for simple cases where feature locations are known in advance.

The fluid flow phenomena of interest typically involve complex anisotropic characteristics. These can be effectively
addressed through mesh adaptation. Specifically, metric field-based mesh adaptation offers a robust mathematical framework
for managing both isotropic and anisotropic cases [2]. Moreover, anisotropic meshes can be naturally created by designing a
unit mesh in a Riemannian metric space and transforming it into Euclidean space, as demonstrated by Hecht and Mohammad
[3]. This method has proven effective in generating highly anisotropic meshes, particularly within boundary layers in 2D and
3D steady-state CFD simulations for the HDG method [4]. Building on this, Dolejsi [5] developed a comprehensive
framework to generate metric fields for high-order hp-adaptive methods by minimizing interpolation error in the Lq-norm.
Balan et al. [6] further advanced this approach by applying an adjoint-based hp-adaptation methodology for high-order DG
schemes in nonlinear convection-diffusion problems, deriving optimal anisotropy based on Dolejsi’s method [5] and mesh
size using dual-weighted residuals. Additionally, Rangarajan et al. [7] developed a framework for anisotropic h-adaptation
in 2D for high-order methods, optimizing the mesh globally with respect to the Lq-norm of interpolation error. This
framework was later extended to hp-adaptation [8] and 3D cases [9], achieving optimal convergence orders in 2D and 3D
simulations. These methods by Rangarajan et al. [7 and 9] were further extended to goal-oriented mesh adaptation [10 and
11], demonstrating improved convergence compared to h- and hp-adaptation alone. Furthermore, Rangarajan et al. [12]
established analytical formulas for determining mesh density and mesh anisotropy using error estimators, which forms the
basis for this work. For an extensive review of various error estimates for mesh adaptation and their convergence properties
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across different flow problems, Balan et al. [13] provide an extensive analysis. On the other hand, Alauzet et al. [14] offer a
comprehensive review of mesh adaptation techniques.

Despite the advancements in mesh adaptation, current methodologies face significant limitations, primarily due to the
high computational cost of solving adjoint equations. While these methods have proven effective, their computational
expense can be prohibitive. Moreover, computationally cheaper alternatives, such as those based on embedded methods, have
yet to be thoroughly explored for this specific mesh adaptation approach [12].

In this work, the possibility of developing an error estimator that is both computationally inexpensive and capable of
effectively resolving critical flow features is explored. To achieve this, a novel target functional aimed at creating a cost-
effective error estimator is proposed. This functional leverages the embedded method in combination with the gradient of the
numerical solution, enabling accurate error estimation without the need for solving the computationally expensive adjoint
system of equations. This error estimation is then used for mesh adaptation. Thus, this approach offers a more efficient
alternative for mesh adaptation within the framework proposed by Rangarajan [12].

2. Methodology
In this work, the improvement in the mesh adaptation is demonstrated for the scalar boundary layer case in the advection-

diffusion equation (Eqn. 1).

훁 ⋅ cϕ − 	 훁 ⋅ μ	 훁 ϕ − 	Sϕ = 	0 (1)

In Eqn. 1, Sϕ represents the source term, ϕ denotes the state variable, c is the advection speed, μ is the diffusion
coefficient and the set of constants in the equation is P = {c, μ}.

Let's rewrite the governing equation (Eqn. 1) as follows:

� ϕ,P = 	0 (2)

Where, � ϕ,P = 	 훁 ⋅ cϕ − 	 훁 ⋅ μ	 훁 ϕ − 	Sϕ
Assume the objective is to minimize a cost function �(ϕ,	P).
So, the problem can be formulated using a Lagrange multiplier as follows:

ℒ ϕ,P,	λ = 	�(ϕ,	P)	 + 	λ�(ϕ,	P) (3)

In Eqn. 3, ℒ ϕ,P,	 λ  represents the Lagrangian, �(ϕ,	P) denotes the function to be minimized, λ is the Lagrange
multiplier, and �(ϕ,	 P) is the equality constraint. Here, the goal is to minimize �(ϕ,	 P) subject to the constraint
� ϕ,	P = 0, which represents the governing equation.

On differentiating the Eqn. 3, with respect to	 λ and setting the derivative equal to 0, the governing equation can be
recovered.

∂ ℒ
∂ λ

= 	0	→	�(ϕ,P)	 = 	0 (4)

Similarly, on differentiating the Eqn. 3, with respect to ϕ and setting the derivative equal to zero yields:

∂ ℒ
∂ ϕ

= 		 ∂ �
∂ ϕ

+ 	λ ∂�
∂ ϕ

= 	0	→	 ∂ �
∂ ϕ

= 	 − 	λ ∂�
∂ ϕ

(5)

This results in the adjoint equation, which can be expressed in its discretized form as follows:
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� ϕ,P − 	� ϕh,P
ϕ − 	ϕh

= 	 − λ
� ϕ,P − 	� ϕh,	P

ϕ − 	ϕh
(6)

So,

� ϕ,P − 	� ϕh,P = 	 − λ � ϕ,P − 	� ϕh,	P (7)

In this equation, ϕ represents the true solution, while ϕh denotes the numerical solution.
As the governing equation is � ϕ,P = 0, it follows that:

� ϕ,P − 	� ϕh,P = 	λ� ϕh,	P (8)

So,

λ =
� ϕ,P − 	� ϕh,P

	� ϕh,	P
	 (9)

Let's assume that the cost function is

� ϕh,P = |ϕ − ϕh|	 (10)

So,

� ϕ,P = ϕ − ϕ = 	0 (11)

Thus, using the cost function (Eqn. 11), the adjoint variable (Eqn. 9) can be expressed as:

λ = 	 −
�(ϕh,P)
�(ϕh,	P)

= − 	
|ϕ − 	ϕh|
�(ϕh,	P)

	 (12)

So, the adjoint weighted residual error estimate ηκ across the computational domain Ω is

ηκ = ∫
Ω

	

λ	� ϕh,P dΩ (13)

Thus, by applying Eqn. 12, it follows that 

ηκ = 	∫
Ω

	

− 	
	ϕ − 	ϕh
� ϕh,P

� ϕh,P dΩ 	→		ηκ	 = 	∫
Ω

	

− 	ϕ − ϕh dΩ (14)

For the purpose of error estimation, this study assumes that the true solution is approximated using a second-order
accurate central difference scheme (CDS), while the numerical solution is approximated using a first-order accurate upwind
difference scheme (UDS). Consequently, ϕ − ϕ h ≈ ϕCDS − ϕUDS , where ϕCDS and ϕUDS are the numerical solutions
computed using the CDS and UDS, respectively. However, this cost function struggled to refine the regions of very sharp
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gradients, potentially due to the smaller difference in the solutions in the embedded method, [24]. This limitation might be
addressed by employing higher-order FVM schemes, which provide a more accurate numerical solution. Nevertheless,
extending widely used FVM methods [23] to arbitrary higher orders is challenging compared to methods such as the finite
element method (FEM) [25], discontinuous Galerkin (DG) [26], or hybridized discontinuous Galerkin (HDG) [12], which
can more easily accommodate higher-order extensions.

So, a new cost function for the FVM method is proposed as follows:

� ϕh,P = 	 ϕ − ϕh | 훁 ϕh| (15)

This is because in this problem the error is primarily due to the sharp gradient of the scalar boundary layer. So, the new
adjoint variable (Eqn. 9) will be

λ =
� ϕ,P − 	� ϕh,P

	� ϕh,	P
(16)

So,

λ = 	
|ϕ − 	ϕ| 훁 ϕ| − 	 ϕ − 	ϕh|| 훁 ϕh|	

� ϕh,	P
= −

|ϕ − 	ϕh|| 훁 ϕh|	
� ϕh,	P

(17)

So, the adjoint weighted residual error estimate (ηκ) (Eqn. 13) is

ηκ = 	∫
Ω

	

− 	
	ϕ − 	ϕh | 훁 ϕh|
� ϕh,P

� ϕh,P dΩ 	→		ηκ	 = 	∫
Ω

	

− 	ϕ − ϕh | 훁 ϕh|dΩ (18)

So,

ηκ ≈ 	∫
Ω

	

− 	ϕCDS − ϕUDS | 훁 ϕCDS|dΩ (19)

Once the adjoint-based error estimator is evaluated, the isotropic mesh adaptation procedure described in [12] is followed
with any necessary adjustments. This approach results in improved mesh adaptation compared to relying solely on the
embedded error. For concise notation, this error estimator will be referred to as the gradient-weighted embedded error
estimator or GWEEE.

In this study, the solution is taken from [12] as follows:

ϕ = 	 x	 + e
β1x/μ − 	1

1 − 	e
β1/μ

	 y	 + e
β2y/μ − 	1

1 − 	e
β2/μ

	 (20)

where, c = β1x̂ + β2ŷ, with β1 and β2 representing the advection speeds in the x and y directions, respectively.
Substituting this ϕ into the advection-diffusion equation yields an expression for the source term, Sϕ. This expression

for Sϕ is then used to solve the advection-diffusion equation using FVM [16, 18, 19, 20, 21, 22 and 24]. This particular
expression is chosen for the advection-diffusion equation because it produces a sharp scalar boundary layer for smaller values
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of μ, as illustrated in Fig. 1. All the plots presented in this work are generated using [17] with parameters set to β1 = 10,
β2 = 10 and μ = 0.4. 

Fig. 1: True Solution

3. Results
The mesh generated by the proposed error estimator (GWEEE) closely resembles the one produced using true error

values, which are typically unavailable in practical scenarios. This similarity is evident in Fig. 2 and 3, which illustrate the
meshes and demonstrate the effectiveness of the proposed approach in accurately capturing essential flow features.

 

Fig. 2: Mesh generated using GWEEE Fig. 3: Mesh generated using true error

Additionally, the proposed target functional effectively resolves the scalar boundary layer. This is demonstrated in the
contour plots presented in Fig. 4 and 5. 
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Fig. 4: Contour of the solution for GWEEE Fig. 5: Contour of the solution for true error

Moreover, the L2, and L∞ norms of the error typically decrease before plateauing over successive iterations of adaptation
for GWEEE. This trend is clearly illustrated in Fig. 6 and 7. Additionally, the error norms for the numerical solution on the
mesh generated using the proposed target functional are usually lower than those on the mesh produced with true error values.

Fig. 6: L2-Norm of the error Fig. 7: L∞-Norm of the error

Notably, despite using the same target degrees of freedom in terms of the total number of elements, there is a slight
variation between the total number of elements in true error case and the proposed error estimator. This discrepancy arises
because the metric-based mesh generator, BAMG [15], constructs meshes that are optimal only in a least-squares sense. In
addition to this, the average error norms over the elements for both cases were also evaluated. The analysis revealed
that the average L1, L2, and L∞ norms of error per cell decrease before eventually plateauing with successive mesh adaptation
cycles. This trend is illustrated in Fig. 8, 9, and 10. Furthermore, the error norms per cell for the mesh generated using the
proposed target functional are lower compared to those for the mesh generated using the true error values.

Fig. 8: L1-Norm of the error per cell Fig. 9: L2-Norm of the error per cell Fig. 10: L∞-Norm of the error per cell
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4. Conclusion
In conclusion, the proposed error estimator facilitates efficient mesh adaptation with significantly reduced computational

costs, achieving accurate numerical solutions. This efficiency arises from bypassing the need to solve the larger adjoint
system typically required for adjoint-based error estimators, as the proposed methodology utilizes the embedded method
instead. For the scenarios considered in this study, particularly those involving sharp boundary layers, the proposed estimator
delivers superior results compared to the true error. Therefore, this error estimator is well-suited for applications involving
sharp boundary layers.
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