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Abstract – This study discusses the force analysis of hybrid cable driven manipulators having both cables and rigid 

links with actuators installed on both of them. It is desired to operate the manipulator with minimum actuation forces 

to minimize cable elongation and reduce the operational cost. A minimization procedure is discussed here based on 

Dykstra’s algorithm to minimize the 2-norm of the actuators forces. This procedure was implemented on an example 

3-DOF manipulator with two redundant actuators.  
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1. Introduction 
Cable-driven parallel manipulators (CPM) are parallel manipulators that are based on cables instead 

of rigid-links. They are known for their large workspace and high acceleration capability, compared to 

those of rigid-link parallel manipulators. There have been a number of CPM designs presented in the 

literature such as NIST Robocrane (Albus et al., 1993), Falcon-7 (Kawamura et al., 1995), WARP (Maeda 

et al., 1999), WiRo (Ferraresi et al., 2004) DeltaBot (Behzadipour and Khajepour, 2005), and the hybrid 

cable-actuated robot developed by Mroz et al (2004). Because cables can only be under tension, many 

researchers have studied the ability of CPM’s to achieve static equilibrium in the workspace with taut 

cables (Kawamura and Ito, 1993), (Diao and Ma, 2007). Other studies (Fang et al., 2004), (Hassan and 

Khajepour, 2008, 2011) focused on the optimization of cable forces in the manipulator.  

In order for spatial cable-driven manipulators to be fully constrained against any arbitrary externally 

applied wrenches, it is necessary to have at least seven cables, which can be costly, especially in 

applications not requiring all 6 degrees of freedom (DOF). Hassan and Khajepour (2009) discussed the 

analysis and optimization of the layout of a hybrid cable-driven parallel manipulator with a serial linkage 

consisting of conventional joints to constrain the task space (See Fig. 1). The advantage of the linkage is 

constraining the moving the platform in the taskspace, hence, reducing the number of cables required to 

drive the moving platform. A 5-DOF cable driven manipulator can be driven by five cables, while the 

redundant actuation is provided by the serial linkage. These types of manipulators can be applied in 

lower-DOF applications that require the high acceleration benefits provided by the cables. Mroz and 

Notash (2004) developed a 4-DOF cable-actuated manipulator that is constrained by a rigid-link 

mechanism. Zhang and Gosselin (2001) and Lu and Hu (2007) investigated the kinetostatic models of 

lower-DOF rigid-link parallel manipulators actuated by prismatic actuators and constrained by a passive 

constraining leg. 

This paper discusses the force analysis and the force minimization in hybrid cable-driven 

manipulators in which cables and rigid links both operate the platform. 

 

2. Manipulator Layout 
The general layout of the hybrid cable-driven manipulator discussed in this paper consists of nc 

driving cables and the serial linkage consists of np passive joints and na active joints. The total number of 

joints in the serial linkage is ns = np+na, and the total number of active joints in the manipulator whose 
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function is driving the motion of the manipulator and providing degrees of freedoms to the moving 

platform is nc+na. In addition, the manipulator must have at least one redundant actuator whose function is 

generating internal forces in the manipulator to keep the nc cables in tension. That redundant actuator can 

be redundant cable(s) or redundant actuator(s) mounted on one of the passive joints in the serial linkage. 

The location and direction of the redundant actuator(s) must be carefully designed to ensure that the 

internal redundant force generated will develop tension in all the cables. 

 

 
Fig. 1.  Drawing of a 5-DOF cable-driven parallel manipulator constrained by universal joints. 

 

3. Force Analysis 
To balance arbitrary wrenches applied to the moving platform, redundant actuation is required to 

generate internal forces that keep all the cables in tension. Thus, we can write the total wrenches applied 

to the moving platform as: 

re www 

 

(1) 

where  TTT
mfw  is the sum of wrenches applied to the moving platform that consists of force f and 

moment m; 
ew is the external wrench applied to the moving platform by the task; 

rw is an internal wrench 

that is applied by the redundant actuation of the serial linkage or by a redundant cable in order to create 

tensile forces in the cables to keep them taut. 

From the principle of virtual work, one can determine the mapping between the wrench applied to the 

moving platform and the cable forces as: 
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where 
cτ  is a vector of the cable tensions, which can only be under tension; and 

aτ  is a vector of the 

forces of the active joints in the serial linkage; pJ  is (6×np) sub-matrix of that corresponds to the 

passive joints in the serial linkage; 
aJ  is (6×na) sub-matrix of that corresponds to the active joints in 

the serial linkage. 

From (1) and (2), we get: 
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We can write the cable tensions in (3) as: 
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The redundant wrench 
rw  needed to keep the cables taut can be generated by a redundant actuator 

in the serial linkage or by a redundant cable. These two cases will be discussed separately in the following 

sections. Redundant actuation can be provided from redundant actuator(s) mounted on one (or more) of 

the np passive joints in the serial linkage. The redundant actuator(s) is used only for generating the internal 

redundant wrench 
rw  needed to keep the cables taut and is not for motion control. The redundant actuator 

forces in the serial linkage can be determined from the redundant wrench as (Tsai, 1999).  
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where
rτ is nr–dimensional vector of the forces of the nr redundant actuators mounted on the passive joints 

in the serial linkage that are required to generate wrench 
rw on the moving platform. 

From (4) and (5), we get: 
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4. Actuator Force Minimization 
Assuming that the cables and actuators in the rigid links apply forces in one direction, the general 

solution for actuator forces in (2) can be written as: 

 

hwτ NA      : 0iτ   i  (8) 

  

where A is the matrix transpose in Eq.2; 
A  is the Moore-Penrose inverse of the matrix transpose; N  is a 

matrix whose columns form a basis of the null-space of matrix A ; and h is an nr-dimensional vector of 

arbitrary real numbers.  

Assuming that the manipulator is in a non-singular configuration, a sufficient condition for the 

existence of a solution to τ  is the existence of a null vector hN  whose components are all positive, 

indicating that the cable-based parallel manipulator can be fully constrained under any given and . 

Assuming that the manipulator is fully constrained, this section will present the minimum-norm solution 

of τ   that will be denoted as τ
τ

min .  

The condition that all components of τ  are non-negative means that τ  must belong to non-negative 

orthant n
R , i.e., n

Rτ ,  which can be expressed as: 

 iτnn  0iRR τ  (9) 

where n = nc + nr . 

It is also evident that τ  must belong to an nr-dimensional affine set in nR  that is a translation of the 

null space of A from the Origin “ τ = 0”   by vector w
 A . This affine set denoted here as   can be 

expressed as:  

f m
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  rn
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Since τ  and n
R , 

 n
 R:τ  (11) 

It should be noted here that the intersection set  is non-empty as a result of the assumption made 

in this paper that there exists a null-space vector whose components are all positive. This positive null-

space vector intersects with the non-negative orthant. Figure 2 presents a geometrical illustration of the 

intersection between a 3-dimensional non-negative orthant and a 2-dimensional affine set.  

 

 
Fig. 2. Geometrical illustration of the intersection between a 2-dim affine set and a 3-dim non-negative orthant 

 

 

The 2-norm of vector τ  can be represented as τ0  , which is the Euclidean distance between the 

Origin “ τ =0” and point τ . Minimizing the 2-norm of τ  will be achieved by minimizing τ0  . 

Hence, the problem can be stated as: 

 

τ0
τ
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The solution to this problem is the minimum-Euclidean-distance projection of the Origin “ τ =0” 

onto the intersection set  and, will be expressed as  0τ
τ

proj
min

. This solution can be easily found 

using the Dykstra’s alternating projection algorithm, which is a well-known algorithm for finding the 

minimum-Euclidean-distance projection of a point onto the intersection of a number of convex sets. It was 

first presented by Dykstra (1983) and reintroduced later by Han (1988) who provided a proof of its 

convergence. This algorithm is a simple and easy-to-apply minimization approach because it is based on 

cyclic projections that automatically converge to the solution. Also, the fact that the algorithm requires 

defining the variables in convex sets makes this approach geometrically intuitive and easy to visualize. 

 

The Dykstra’s Algorithm 

Let point b mR  and  , …, L  are L convex sets in mR  and their intersection is the non-empty 

set  k
L
k


1   . The Dykstra’s algorithm can be used to find the minimum-Euclidean-distance 

projection of b onto set  . This projection is denoted as  bproj  and is the solution to the 

minimization problem vb
v


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min . To illustrate the application of Dykstra’s algorithm in finding 
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 bproj , let ik ,x  and ik ,y
mR  where ik ,x  is the minimum-Euclidean-distance projection of t mR  

onto convex set k at iteration i; and ik ,y = ( ik ,x − t). The term k is an index referring to convex set k . 

The algorithm initializes at i = 0, where 0,1x  = b, which is the point to be projected, and 0,ky  =  0  for all 

k. 

 

for i = 1, 2, …, until convergence 

    1,1,1   iiL xx  

     for k = L, …, 1 (L, …, 1 are indices for L , …, ) 

  t = ik ,1x  − 1, iky  

  tx kik proj,  

 ik ,y = ( ik ,x − t) 

    loop end 

loop end 

 

This version of the algorithm is reported in (Han, 1988). At each iteration, the algorithm makes 

successive projections onto convex sets  , …, L  until all sequences ik ,x  converge to a unique point 

,kx  bproj  when   is non-empty. Vector ik ,y , which is normal to set k  at iteration i, is part of 

the general algorithm and its role is to ensure that the algorithm converges at the minimum-Euclidean-

distance solution as explained in (Dykstra, 1983). The calculation of this vector is unnecessary when all 

the intersecting sets are affine. 

To apply this algorithm in finding the solution to minimize the 2-norm of the actuator forces in (8), 

i.e., finding  0τ τ projmin , the terms in the general algorithm above are specified as follows: m = n 

(dimension of τ ); b = 0 (the Origin); sets  , …, L = n
R ,  (L=2); and n

  R ; and k = 2,1 

(indices for  and n
R , respectively). At each iteration, this algorithm makes successive projections of 

point t onto sets   and n
R , denoted as  tproj  and  tnproj

R
, respectively, until sequences ik ,x   

converge to  ,kx ττmin  0proj . 

This algorithm requires the calculation of projections  tnproj
R

 and  tproj . Projection  tnproj
R

 

is determined as (Dattorro, 2005)Error! Reference source not found.: 

 

  tt 

nproj

R
   :   0,max ii tt    ni ...,,1for    (13) 

  

This projection is basically clipping all the negative coordinates of point t to zero. Projection 

 tproj  can be determined as: 

 

    wtt
  AAAIproj  (14) 

  

This projection is obtained by projecting t onto the null space of A and translating the result by 

w
 A . 

 

5. Example 
The procedure explained in this paper is applied to the 3-DOF cable-based parallel manipulator 

shown in Fig. 3. It consists of three cables (nc = 3) connected to the fixed base on the top at points Ai (i = 
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1, 2, 3) that form an equilateral triangle, where subscript i is an index identifying each cable. The corners 

of the triangle lie on a circle of a 300 mm radius with its centre located at OA. The manipulator contains 

two redundant limbs (nr = 2): redundant limbs 1 and 2 (compressive-only cylinders) which are connected 

to the base at [129.9 75.0 0] mm and [−129.9 75.0 0] mm, respectively. The position of P (end-effector) is 

[0 0 300] mm from OA.  The external force applied to P is w = [−10 5 −6]
T
  N. All vectors are expressed in 

the reference frame xA-yA-zA. 

In this sub-section, the minimum-norm solution τ
τ

min  will be calculated. At this configuration, 

matrix A  is calculated as: 
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The first three columns are the directions of the cables forces and the last two columns are the 

directions of the redundant-limb forces. These redundant limbs are cylinders that apply compressive 

forces to the mobile platform. In this example, τ  belongs to the intersection of 5-dimensional (n = 5) non-

negative orthant 5
R  and 2-dimensional (nr = 2) affine set  , i.e., τ , where  5

 R . The 

Dykstra’s alternating projection algorithm is applied to determine the minimum-Euclidean-distance 

projection of the Origin onto the intersection set  5
 R  using the projection formulas in (13) and 

(14). After 31 iterations within 0.031 second of CPU time in MATLab software each projection vector 

converged when the difference between the norms of each vector in two successive iterations became less 

than a specified acceptable convergence error of (1e-5 N). Table I lists the successive projections (i.e., 

values for ik ,x ) and shows that they converge to  0τ
τ

proj
min

 = [8.54 2.52 0.00 1.46 13.99]
T
 N. The 

norms of the total actuator forces, τ , and that of the cable forces, cτ , are 16.65 N and 8.90 N, 

respectively. 

 

 
Fig. 3.  A schematic diagram of the 3-DOF example manipulator. 
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Table 1. Convergence of Dykstra’s algorithm to the minimum norm solution of the cable tensions. 

 

 
 
6. Conclusion 

The paper discusses the force analysis of hybrid cable-driven manipulators where both cables and 

rigid links operate the platform. A procedure to minimize the 2-norm of the actuator forces was also 

discussed using Dykstra’s algorithm. This procedure was successfully demonstrated on a 3-DOF example 

having three cables and two rigid links. 
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