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Abstract- This paper presents an approach to numerical simulation of fluid flow within oil formation towards hy-
draulically fractured wells. The fluid flow is described by simplified two-phase three-dimensional Darcy’s law for
incompressible fluid. The integral averaging along fracture width is employed to derive two-dimensional equation for
flow in the fracture. Presented method comes to finding consistent formation and hydraulic fracture fluid pressure
fields. Suggested solution technique requires fracture geometry and permeability distribution along the fracture. It
could be applied for fractured well production calculation using either volumetric flow rate or well bore pressure as
specified parameters.
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1. Introduction
Hydraulic fracturing is used to enhance well production due to additional fluid flow through the fracture. Filtration

properties of the fracture can be characterized by the absolute fracture permeability k f , which is typically several or-
ders of magnitude higher than the average rock permeability k (Cadet, Selyakov, 1988, Kanevskaya, 2002, Kanevskaya,
1988). Its direct determination, as well as determination of the fracture geometry is practically impossible, so hydro-
dynamic methods based on the analysis of well tests data by mathematical models are widely used (for example,
Economides, Nolte, 2000). Such models exploit simplified models of well with a fracture. The most popular shapes
of fracture representation are ellipse, wedge and plate (Economides, Nolte, 2000, Gringarten et al., 1974). Their sizes
are associated with the volume of injected fracturing mixture and fracturing well bore pressure. It is believed that at
reservoir depth greater than 1 km hydraulic fractures are oriented vertically. Mathematical models of filtration flow
in a fracture towards the well are based on the diffusion equation and differ by assumed fracture shape and boundary
conditions on its surface. In some cases of homogeneous layers and canonical fracture shapes analytical solution of the
problem can be derived (Economides, Nolte, 2000, Gringarten et al., 1974). At present time different applied numerical
approaches which use non-uniform locally refined meshes are used (Hairullin et al., 2009, Hisamov et al., 2010).

In this paper, we present a mathematical model of the filtration flow towards the fractured well. The fracture is
presented as a vertical plate of finite size, which passes through the axis of a vertical well (fig. 1a). Corresponding
filtration problems are formulated separately for the flow inside and outside fracture on the basis of Darcy’s law for
incompressible fluid. Pressure and filtration velocity equalities are used to combine inner and outer flow problems
solution. Presented numerical algorithm is used in large scale (superelement) reservoir simulation method (Mazo,
Bulygin, 2011) for fractured well performance estimation.

2. Mathematical Model
Superelement reservoir simulation technique uses large scale grids for calculating cell averaged values of fluid pres-

sure pa and water saturation sa. Three-dimensional superelements grid is constructed on the basis of two-dimensional
Voronoi diagram built by treating 2D projections of vertical wells as its cell sites.
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Fig. 1. 3D representation of the fractured well (a); 2D projection of the well within a superelement and cylindrical
computational area (b)

2.1. Outer Problem Formulation
Consider the vertical well with defined radius rw and volumetric rate q that is located in the center of superelement

(fig. 1b). Suppose that at moment t = t0 before fracturing procedures took place averaged cell pressure and satura-
tion were calculated. Let us study the filtration flow within vertical cylinder D = {0 < r < R,0 < z < H} with lateral
boundary Γ which contains the well and the vertical fracture of length 2L, height H and width 2δ . The radius R of the
cylinder is equal to the average size of the corresponding superelement (usually R� L), its top and bottom boundaries
(z = 0 and z = H) are impermeable horizontal planes.

Assuming that hydraulic fracturing at moment t = t0+ doesn’t impact fluid pressure at the distance R from the well
bore and neglecting compressible and capillary effects, we can formulate boundary value problem for the filtration flow
in the cylinder as
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where p and p f are the pressure fields corresponding to outer and inner flow, r,z,φ are cylindrical coordinates, Γw,
Γ f are perforated section of the well and fracture boundaries. Coefficient σ is defined as function of absolute rock
permeability k, relative permeabilities kw(s), ko(s) and fluid viscosities µw, µo where indices “w” and “o” correspond
to water and oil properties respectively:

σ = k
(

kw(sa)

µw
+

ko(sa)

µo

)
. (4)

In boundary conditions (2) outer pressure pa is defined, well bore pressure pw could be defined or obtained from well
rate qw, pressure on the fracture surface p f is unknown and should be calculated from inner problem solution. In the
case of infinite fracture permeability (k f → ∞) we can assume that p f = pw (see Economides, Nolte, 2000).

2.2. Inner Problem Formulation
To describe the surface of the fracture it is convenient to introduce local Cartesian coordinates ξ ,η ,z as shown on

fig. 2. Let us assume that fracture surface sections at ξ = ±rw±L are non-permeable, fracture pressure at ξ = rw is
equal to well bore pressure, pressure and filtration velocities are continuous on η =±δ surfaces.

Assume the diffusion law as the governing equation for the fracture pressure p f . For the right side of fracture area
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Fig. 2. Scheme of hydrodynamic interaction between reservoir, fracture and the well

it takes the form
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where
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is constant under the assumption of constant fracture permeability k f .

Integration of (5) over the fracture width with boundary conditions taken into account gives us
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where 〈p〉 is the pressure averaged over the pressure width

〈p〉= 1
2δ

+δ∫
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p f dη .

Boundary conditions for equation (6) are

〈p〉= pw, ξ = rw;
∂ 〈p〉
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∂ 〈p〉

∂ z
= 0, z = 0,H. (7)

So the boundary value problem for the right side of the fracture is (6),(7); left side of the fracture is treated in the same
way.

For thin fractures δ � L we can assume that

p(δ ) = p(−δ ) = 〈p〉 . (8)

Condition (8) is used to combine inner and outer solutions.

2.3. Non-dimensional Formulation
For further discussion the following non-dimensional variables are introduced:
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r,rw,δ ,ξ ,R,z,H

l
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,

where l is specific length, σ0 is specific value of reservoir σ coefficient which is computed according to 4 using specific
rock absolute permeability k0, constant M describes the relation between permeability of rock and permeability of
fracture.
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Assume that the specific sizes of superelement (R ≈ 200m), well (rw ≈ 0.1m) and fracture (L ≈ 10m) provide
inequalities

δ̄ � r̄w� 1, R̄� 1.

Therefore we can represent the fracture as the zero width area within the outer flow problem computational domain.
For the sake of convenience of obtaining numerical solution let us introduce logarithmic radial coordinate ρ as

ρ(r̄) = ln
r̄

r̄w
, 0≤ ρ ≤ R̃≡ ln

R̄
r̄w

.

Uniform meshing along logarithmic radial coordinate ρ leads to a grid that reflects logarithmic origin of the pressure
distribution. In the subsequent text the bar above non-dimensional variables will be omitted.

Non-dimensional formulations for outer (1)–(3) and inner (6), 7 flow problems takes the form:
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• inner problem (for the left side of the fracture)
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2.4. Numerical Solution
Spatial approximation of boundary value problems (9)–(12) was built on a regular mesh using finite volume

method. Obtained systems of linear equations for inner and outer flow problems were used to construct coupled
solver matrix, which was solved using algebraic multigrid method. So there was no need to introduce iterative process
to combine inner and outer solutions.

3. Numerical Examples
A series of computations of the homogeneous (σ = 1) problems in a unit height reservoir with pw = 0, pa = 1

were performed for different M and L parameters. Fig. 3a shows the improvement of fractured well productivity due to
enhancement of fracture length L and parameter M which reflects fracture permeability. In fig. 3b the relation between
well flow rate qw, fracture flow rate q f , total flow rate q and fracture permeability is shown. Naturally for the low
permeable fractures the main part of total flow rate goes through the well bore. For M > 0.05 the significant increase
in the total flow rate is observed. In this case the fracture flow turns dominant, and the well bore flow rate goes to zero.
The latter follows from the fact that high fracture flow rate decreases pressure gradient in a reservoir and therefore the
filtration velocity towards the well in the direction parallel to fracture orientation decreases.

The pressure and velocity fields near the fractured wellbore and the pressure distribution in the direction parallel
and perpendicular to fracture orientation are shown in fig. 4. It could be observed, that pressure distribution in a
direction perpendicular to fracture is logarithmic, while in a direction parallel to fracture it has typical breakpoint at
r = L. This is consistent with theoretical analysis provided by Kanevskaya (1998) and Badertdinova et. al (2010).

The results of 3D modelling of filtration flow in a non-homogeneous reservoir is shown in fig. 5. The dimensional
sizes of computational domain were chosen as R = 100m, H = 15m, rw = 0.1m. Well drainage area contained three
separated permeable layers, the second of which was perforated. In the case of no fracturing (fig. 5b) pressure drop
doesn’t propagate outside perforated layer due to impermeable barrier above and below it, but in case of permeable
fracture (fig. 5c) one can see that perforation impacts the whole fractured reservoir. In the latter example the total liquid
flow rate increases by about 15 times.
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Fig. 3. Relation between volumetric flow rate enhancement due to fracturing (a), well bore and fracture flow rates for
L = 0.5(b) from fracture parameters for homogeneous reservoir

a) b)

Fig. 4. Calculated pressure and filtration velocity for L = 0.5, M = 5 and homogeneous reservoir: pressure and
velocity fields (a), pressure distribution along the axes parallel and perpendicular to fracture (b)

a) b) c)

Fig. 5. An example of 3D flow calculation: absolute permeability of the drainage area (a), pressure field in the case of
no fractures (b), pressure field around fracured well (c). Perforated well section is shown by marker, fracture is

denoted by dashed white line

4. Conclusion
In present paper a numerical approach to obtain hydraulically fractured vertical well performance has been de-

veloped. The filtration flow fields are calculated within the well drainage area which is approximated by a vertical
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cylinder. Solution inside and outside fracture are searched separately and then combined using the equality of pressure
and filtration velocities on the boundary of the fracture. Corresponding government equations are gained on the basis
of simplified Darcy’s law for incompressible fluid. Their non-dimensional formulations involve two parameters char-
acterizing fracture properties: non-dimensional fracture length L and constant M which describes the relation between
fracture and rock permeabilities, fracture width and well radius.

Large scale superelement reservoir solution is used to set Dirichlet boundary conditions on the lateral boundary
of the cylinder. Presented method can deal with either well bore pressure or well volumetric flow rate as the specified
parameter. In the latter case a special algorithm of decomposition of governing equation is used to treat non-local
boundary condition on the well bore. The numerical solution of boundary value problems are obtained by finite
volume method using regular grid with logarithmic refinement towards the well bore.

Presented numerical algorithm was used to obtain the set of solutions of model problems with different fracture
properties. On the basis of these solutions the nomogram was built. It could be used to estimate the flow rate enhance-
ment due to fracturing under the assumption of homogeneous reservoir.

In this paper only vertical wells with vertical fractures have been considered. However presented solution approach
could be exploited to develop similar algorithm that deals with arbitrary shape of wells and fractures.

Large scale reservoir simulation which involves presented algorithm for fractured well performance calculation
allows performing fast reservoir flow modelling with well interference effects taken into account and could be an
effective tool for numerical estimation of hydraulic fracturing procedures benefits.
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