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Abstract - The paper is devoted to development and implementation for a numerical method for investigation of 

stress-strain state of the solids with large elastic-plastic deformations. Calculation algorithm is based on the 

linearized equation of virtual work, defined to actual state. The arc-length method is used. A spatial discretization is 

based on the finite element method. The developed algorithm of investigation of large elastic-plastic deformations is 

tested on the solution of the necking of circular bar problem and a cylindrical shell subjecting to a torque.  
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1. Introduction 
In this paper the algorithm of numerical solution of the problem of large elastic-plastic deformations 

is considered. There are many publications are devoted to solving problem of finite deformations, for 

example, Eidel et al. (2002), Schröder et al. (2002) or Berezhnoi D.V. et al. (2011). They differ by the 

difference in the formulation and solution obtained algebraic problems. 

In this paper a solution algorithm is based on an Update Lagrange formulation. The principle of 

virtual work in terms of the virtual velocity is used. Kinematics of a medium is described by the left 

Cauchy–Green tensor, the stress state is determined by the Cauchy stress tensor. The theory of flow is 

used for describing plastic deformation. The total deformation rate is represented as a sum of elastic and 

plastic parts. The linearized constitutive equations of elastic deformation are obtained as a function of the 

derivative of the Truesdell stress rate. The von Mises yield criterion with isotropic hardening is used. The 

arc-length method is used for solving general equations. And the radial return method with an iterative 

refinement of the current mode of deformation is applied for dividing of the elastic and plastic 

deformations. The numerical implementation is based on the method of finite elements (FEM) 

(Golovanov et al. (2005a, 2005b, 2008)). The developed algorithm of investigation of large elastic-plastic 

deformations is tested on the solution of the necking of circular bar problem and a conical shell subjecting 

to a torque. The results of solutions and comparison with results obtained by other authors are presented.  

 

2. Kinematics 

The deformation gradient F, the left Cauchy–Green tensor T B F F , the velocity gradient   -1
h F F  

and the deformation rate sym( )d h  are used for describing of kinematics of a continuum (Bonet et al., 

1997). The total deformation rate is represented as a sum of elastic and plastic parts: e p d d d . 

 

3. Constitutive Equations 
The constitutive equations are obtained using the free energy function and yield function. The Cauchy 

stress tensor is defined as 
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where det( )J  F  is a changing of volume,   is the free energy per unit volume in the reference 

configuration. For isotropic material the free energy is defined as 

 

 1 2 3, ,I I I  B B B
, 

 

where 
iI B

 is the corresponding invariants of B .  

After linearization (1) the rate of Cauchy stress is defined as 
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Or  

 
Tr : , ΣΣ Λ d  (2) 

where Tr

1I     T

dΣ Σ h Σ Σ h Σ  is the Truesdell stress rate. 

The theory of flow is used for describing plastic deformation (Golovanov et al. (2005a, 2005b, 2008), 

Davydov et al. (2013)). The total deformation rate is represented as a sum of elastic and plastic parts: 
e p d d d . For the plastic deformation rate must hold association flow rule: 
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where   is the consistency parameter, Φ is a yield function. 

The plastic flow   can be computed from equation  

 

  0. Σ  

 

4. Variational Formulation: Integration Algorithm of the Flow Rules 
The research algorithm is based on an Update Lagrange formulation. The principle of virtual work in 

terms of the virtual velocity as applied by Golovanov et al. (2005a, 2005b, 2008) is used: 
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where   is the current volume, S  is the surface on which the force p  is applied, f  is the body force 

vector, v  is a velocity vector. After linearization the system of linear equations is obtained, where the 

unknown is the increment of displacement in the current state 1k
Δ u . As previously used by Golovanov 

et al. (2008) for solving general system of equations the arc-length method is applied. The current state 

and trial stress are defined as 1 1k k k  R R u  and 1 1k k k   Σ Σ Σ . And if ) 0(  k+1
Σ  then the 

Cauchy stress 1 1k k Σ Σ , else the radial return method with an iterative refinement of the current mode 

of deformation is applied, see Davydov et al. (2013). 

 

5. Numerical Example 
As an example the potential of elastic deformation is considered:  
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where  ,  are Lame parameters. The von Mises yield criterion with isotropic hardening is used (e.g. 

Eidel et al. (2002) or Schröder (2002)). The numerical implementation is based on the finite element 

method. An 8-node brick element is used. 

 

5.1. Necking of a Circular Bar 
The necking of a circular bar is an example widely investigated in the literature; see e.g. Eidel et al. 

(2002), Schröder et al. (2002) or Berezhnoi D.V. et al. (2011). To initialize the necking process radius in 

the center is reduced by 1.8 %. Fig. 1 displays the final deformed structure and the equivalent plastic 

strain, which concentrates in the necking zone, Fig. 2 – the comparison of results. The results are in 

very good agreement with the computational reference solutions of Eidel et al. (2002) and Schröder 

(2002). 

 
Fig. 1. Equivalent plastic strain at final structure 

 

 
Fig. 2. Computational results of applied force F [kN] versus axial elongation w [mm]. 
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5.2. Torsion of a Cylindrical Shell 
In the second example of isotropic elastoplasticity a cilindrical shell subjecting to a torque. Fig. 3 

displays the final deformed structure and the equivalent plastic strain. 

 

 
Fig. 3. Equivalent plastic strain at final structure. 

 

6. Conclusion 
In this paper a finite element model for isotropic elastic-plastic material behavior at large 

deformations has been presented. Physical relations are defined by the free energy function. The general 

radial return method is applied. Calculation algorithm is based on the linearized equation of virtual work 

in terms of the virtual velocity. The arc-length method is used. The results of the solutions of the necking 

of circular bar problem and a cylindrical shell subjecting to a torque are presented. The computed results 

have a good agreement with available solutions from the literature.  
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