
Proceedings of the 3rd International Conference on Mechanical Engineering and Mechatronics 

Prague, Czech Republic, August 14-15, 2014 

Paper No. 170 

170-1 

 

Adaptive Humanoid Robot Arm Motion Generation by 
Evolved Neural Controllers 

 

Genci Capi 
Faculty of Engineering, University of Toyama 

3190 Gofuku, Toyama, Japan 

capi@eng.u-toyama.ac.jp 

 

Zulkifli Mohamed 
Universiti Teknologi MARA 

Malaysia 

 
 
Abstract - In this paper, we present a new method for humanoid robot arm motion planning satisfying multiple 

constraints. In our method, the humanoid robot arm motion generation is formulated as an optimization problem. 

Four different constraints, which cover a wide range of humanoid robot tasks, are considered: minimum time, 

minimum distance, robot hand acceleration and constant joint angular velocity. Results show that arm motions have 

different characteristics. In order to further verify the performance of humanoid robot arm motions, they are 

transferred in humanoid robot mobile platform. 
 

Keywords: Humanoid mobile robot, Motion planning, Neural networks, Genetic algorithms. 

 

 

1. Introduction 
Humanoid robots are expected to perform in everyday life environments. Therefore, they have to 

perform a wide range of tasks, such as picking an object and giving it to the human, removing an 

unnecessary object etc. The wide range of robot task requires different robot motion strategies. For 

example, the speed of moving the hand to the glass of water is usually higher then moving the hand with 

the glass of water. In addition, because there are an infinite number of trajectories connecting the robot 

hand position with the goal location, the robot has to select the best trajectory and speed in order to 

complete the task successfully. 

A lot of work has been done on humanoid robot arm motion generation. Flash and Hogan (1985) had 

proposed minimum hand jerk criteria, Rosenbaum et al. (1995) proposed minimum angle jerk criteria and 

minimum torque change criterion introduced by Uno et al. (1989), where control objects are the joint 

links plan in an intrinsic dynamic- mechanical space. Nakano et al. (1999) had proposed minimum 

commanded torque change criterion and using representation of motor commands controlling the 

muscles. Wada et al. (2001)had proven that the minimum commanded torque change is the closest to 

human trajectories.  

In other studies, Vahrenkamp et al. (2008) suggested Rapid-Exploring Random Trees (RRTs) which 

can adapt the number of degree of freedom used in robot motion thus improving the performance and 

quality of the trajectories. The numbers of degree of freedom used are optimized using RRT. In an eight 

degree of freedom robot, RRT determines the optimum number of joints needed to complete the task. Ang 

et al. (2009) proposed a minimum time motion planning of robot arm using Pareto based multi-objective 

Bees Algorithm for a SCARA robot. Four different operators are used to optimize the cubic splines 

trajectories thus minimizing the travelling time of the robot which are discrete recombination, 

intermediate recombination, line recombination and path redistribution and relaxation. However, most of 

the previous works are focused on understanding human arm motion generation criteria. 

In our work, we propose a humanoid robot arm motion generation method based on four different 

criteria. The four criteria are minimum time, minimum distance, robot hand acceleration and constant 
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joint angular velocity. In our method we evolved a neural network that generates the best robot motion for 

each objective function. These four criteria cover a wide range of robot motion required during everyday 

life robot tasks. Therefore, the selection of the best criteria to generate the trajectory is based on the 

taskthe robot has to perform. Another advantage of our method is that we employ a single neural 

controller for each objective function to generate the robot arm motion in a wide range of initial and goal 

location. These different criteria will make the robot more intelligent when choosing the best objective 

function for the given task. In addition, a new mobile humanoid robot platform has been developed to 

verify the performance. The robot composed by the upper part body and a mobile platform for navigation. 

The paper is organized as follows. In section II the mobile humanoid robot specification are 

presented.  The robot arm motion generationis discussed in section III. In section IV and section V, the 

neural controller and the evolution of neural controller are explained. The simulation and experimental 

results are provided in section VI. In the last section, we give conclusions and future works. 

 

2. Mobile Humanoid Robot 
T The mobile humanoid robot has been developed in our lab is shown in Fig. 1. The key 

performance specifications of the mobile humanoid robot are: 

 Arm length – 54 cm 

 Total height – 134 cm 

 Maximum moving speed 1m/s 

In general, the developed robot has fourteen degree of freedom, five degree of freedom on each arm, 

two hands and two degree of freedom head. The humanoid robot is placed on a moving platform to 

increase its mobility.The camera and a laser range sensor are used for safe robot navigation. The shoulder, 

upper arm and lower arm are activated by three DC motors. Three servos are used for each hand for 

object grasping and manipulation. Two web cameras are used for mobile platform motion and object 

recognition. The detail explanation of the inverse kinematics and mechatronic design are presented by 

Mohamed et al. (2012). 

 

  
Fig. 1. Developed robot. 

 

3. Robot Arm Motion Generation 
Picking and placing, removing, pushing, etc. in all these tasks the humanoid robot trajectory and 

speed must be carefully selected in order to complete the task successfully. Therefore, in each stage of 

task performance, the main problem is what trajectory and how the moving speed must change connecting 

the robot hand and goal positions. 

The humanoid robot has to move the hand (object) from the initial to the goal position, which is 

connected with an infinite number of trajectories and motion velocities. In order to find the optimal 
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trajectories, we have developed a robot arm simulator (Fig. 2(a)), which replicates the motion of the real 

robot (Fig. 2(b)). 

  
(a) (b) 

Fig. 2. (a) Simulation setup (b) experimental setup. 

 

4. Neural Controller 
Neural networks (NN) are mathematical model that is inspired by the biological neural networks. It is 

a set of algorithms for optimization and consists of links, interconnected state variables, weight values 

associated with each links and a transfer function. Feedforward neural networks are the most widely used 

in many practical applications. It has been chosen for its simplicity and robustness compare to 

backpropagation neural networks which has some drawback if the complexity of the data is increasing 

(Montana et al. (1989)). 

In our work, we consider a single hidden layer feedforward neural network (FFNN), as shown in Fig. 

3. The FFNN receives three inputs: the difference between the robot hand and goal positions coordinate in 

x, y and zaxis. The inverse kinematics,based on potentiometer readings, is utilized to determine the 

current position of the robot hand. In simulated environment, the goal position is pre-determined while in 

real situations is generated based on the image processing. The output units directly control the 3 dc 

motors used to move the shoulder, upper arm and lower arm. The output units use a sigmoid activation 

function where 0 to 0.5 is for one motor moving direction and 0.5 to 1 for the opposite direction. The 

weight connections of the neural controller are trained using genetic algorithm. 

 

 
Fig. 3. Feedforward Neural Networks. 

 

4. Evolution of Neural Controllers 
4. 1. Genetic Algorithm 

Genetic algorithms (GAs) are adaptive heuristics and global searching technique based on 

the principle of evolution (Montana and Davis (1989)). The two basic processes of GAs are 

inheritance and competition toward better region of search space. 

In our work, we used an extended multi-population genetic algorithm, where the 

subpopulations apply different evolutionary strategies (Capi and Doya (2005)). In addition, the 

INITIAL 
POSITION

GOAL 
POSITION

INITIAL 
POSITION

GOAL 
POSITION



 

170-4 

subpopulations compete and cooperate among each other. The GA parameters used are shown in 

Table 1. 
Table 1. Summary of Genetic Algorithm Parameters 

 

Number of Subpopulation 3 

Number of Individuals 450, 450, 300 

Maximum Generations 80 

 

4. 2. Fitness Functions 
4. 2. 1. Minimum Time 

The first criterion is the minimum time taken for the robot hand to move from its initial position to 

the goal position. This objective function is very significant in everyday life environments where the 

robot hand has to move freely from one point to the other, or move small rigid objects. In our system, the 

sampling time to process the sensors data and send the motor command is 0.03 second. Therefore, the 

objective function is to minimize the number of step for the robot to reach the goal position. 

 

                 (1) 

 

4. 2. 2. Minimum Distance 
For a specific task, such as drawing a straight line, arranging books and pushing an object, the 

trajectory connecting the initial and goal positions must be the shortest one. This is the reason minimum 

distance in selected to be one of the objective functions. The minimum distance objective function is as 

follows: 
 

      ∑         (2) 

 

where∑   is the summation of robot hand moving distance in each time step and sdis the shortest 

distance of the robot hand from its initial position to the goal 

 

4. 2. 3. Robot Hand Acceleration 
If the object is not rigid, such as a cup of coffee, it will be better to move with minimum acceleration. 

The robot hand will have a gradually increasing velocity from the starting position and gradually 

decreasing velocity toward the goal position.In this case the total acceleration of the robot hand is 

minimized to have a constant velocity. Two penalty functions are also implemented in order for the robot 

to have a gradually deceleration before reaching the goal position and the number of velocity changefor a 

smooth motion throughout the trajectories. Therefore the minimum acceleration objective function is as 

follows: 

 

  ∑                                 (3) 

 

where∑     is the summation of robot hand acceleration in each time step, vhand_endis the robot hand 

velocity when it approaches the goal position, w is the weight function and nvc is number of velocity 

changes. The number of velocity changes is very important in order to minimize the rapid changes of the 

robot hand velocity in each time step. The weight function (w) is used to adjust the priority between 

∑     and vhand_end. In our implementation the value of w used is 100      

         

4. 2. 4. Constant Joint Angular Velocity 
Another way to minimize the change in hand moving velocity is by minimizing the joint angular 

acceleration. Therefore, the following fitness function is also considered: 
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  ∑   ∑    ∑                       (4) 

 

where ,  ,   and  , is the robot angular acceleration for shoulder, upper arm and lower arm respectively 

 

5. Results 
5. 1. Simulation Results 

The performance of the best neural controller generated for each objective function is shown in Fig. 4. 

Fig. 4(a) shows that minimum time neural controller reached the target position very fast (2.28second). 

However, the hand acceleration (Fig. 4(b) is really high, making it not suitable for tasks such as moving a 

glass of water. An interesting result is that the minimum time and minimum distance trajectories are very 

different. The minimum time neural controller reached the goal position following the longest trajectory. 

Because the change in the hand velocity is included as a penalty function in minimum distance and 

minimum angular acceleration, Fig. 4(c) shows that there is not too much change in the fitness with 

minimum acceleration of the robot hand. The total velocity for the whole trajectory is 488.91 cm/s. The 

performance of constant joint angular velocity criterion is slightly lower with 538.45 cm/s. These 

simulations results show that all four criteria perform accordingly to their objective functions. 

 

 
  

(a) (b) (c) 

Fig. 4. (a) Time to the goal (b) total trajectory distance (c) total velocity. 

 

Fig.5(a) and Fig. 5(b)show the robot hand trajectories and velocity profile for each objective 

function. From the velocity profile, minimum step criterion has the lowest stability in the motion due to 

high velocity within 1 second from its initial position. Other three criteria had a low initial velocity, which 

increases gradually. Theminimum acceleration of the robot hand generated the robot motion which 

reaches the goal position with a small velocity compared to other objective function. 

These objective functions have their own advantages and disadvantages over each other. If the robot 

hand need to move fast, the minimum time is best solution, for stability, robot hand acceleration and 

constant joint angular velocity can be used. For high accuracy, shortest distance will be the best objective 

functions. These results will be used in the next step of this research by implementing these criteria as the 

multi objective functions of the robot and it will choose the best objective function for a given command 

or task. 
 



 

170-6 

  
(a) (b) 

Fig. 5. Robot hand (a) trajectory (b) velocity. 

 

5. 2. Experimental Results 
The video capture of the experiment with the humanoid mobile robot is shown in Fig. 6. The robot 

has to place the bottle of water on the table. Because its initial position is far from the table, first the robot 

utilizes the laser and camera sensors data to reach the table. The robot arm motion is generated by four 

optimal neural controllers in order to compare the performance. The same motion is also repeated without 

holding the bottle to compare the results. 
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Fig. 6. Video capture of the experiment. 

 

The time needed to reach the table is shown in Fig. 7(a) for no bottlemotion and Fig. 7(b) with the 

bottle motion. In simulation the minimum time taken was 2.28 second, while in the real robot it took 

2.425 second no bottle and slightly different (2.38second)with the bottle. The same results are obtained 

also for the other three criteria. The performance of the robot manipulating the bottle is comparable with 

the simulation results. 
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Fig. 7. Time to the goal (a) without load (b) with load. 

 

The comparison between the simulation and two experimental setups (with and without bottle) are 

shown in Fig. 8. In simulation, the external conditions are not considered such as joint friction, 

mechanical gear backlashes, motor gearhead backlashes, gravitational effect, mechanical design and the 

movement of the water inside the bottle. In the experiment, these factors are affecting the performance of 

the robot. In terms of time taken, there are small differences for all objective functions. It can be seen that 

the motion is slightly faster while holding the bottle due to higher gravitational force. 

These external factors affect the performance of the robot, as shown in Fig. 9. All three angles of the 

right hand are measured and compared. In simulation, the trajectory and the angle movement of each joint 

are very smooth. Although the performance of the robot is not as good as the simulations while holding 

the bottle, the robot follows nearly the same trajectory generated in the simulated environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 8. Comparison between objective functions. 
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Fig. 9. Comparison between objective functions (θ1, θ2,&θ3) (a) simulation (b) experiment (with load). 

 

6. Conclusion 
This paper proposed four different criteria for robot arm motion generation. We evolved one optimal 

neural controller for each fitness function by using the genetic algorithm. The advantage of the proposed 

algorithm is that the robot can generate the hand motion by the best neural controller based on the task it 

has to complete. In addition, the same neural controller can be employed to generate to robot hand motion 

for different initial and goal positions. The simulation results were also tested in real robot hardware, 

resulting in a good performance. 

In the future, we plan to employ multi-objective evolutionary algorithm for evolution of neural 

controllers. In addition, both arm motion generation will be considered. 
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