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Abstract - A finite-horizon Linear-Quadratic-Gaussian (LQG) control problem is considered. Observation noise in 

this problem is assumed to be small. A limit behavior (as the noise intensity tends to zero) of the optimal value of 

the cost functional in this problem is analyzed. Theoretical results are applied to a planar interception problem of a 

maneuvering target with linearized first-order dynamics of both interceptor and target. 
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1. Introduction 
Modern measurement devices, being accurate enough, yield a small measurement error (noise). A 

controlled system, equipped with such a type of measurement devices, is modeled mathematically by 

dynamic (differential or difference) equation and observation (output) equation with a small noise. 

Continuous-time linear optimal filtering and estimation problems, as well as LQG control problems, 

with a small noise in observation (or noise free observation) were studied extensively in the literature. 

Most of the works in this topic deal with the infinite horizon case in either steady state or integral versions 

(see e.g. (Friedland 1971, Kwakernaak & Sivan 1972b, O’Reilly 1983, Soroka & Shaked 1988, Halevi, 

Haddad & Bernstein 1993, Aganovic, Gajic & Shen 1995, Braslavsky, Seron, Mayne & Kokotovic 1999, 

Hippe 2011) and references therein). The finite horizon case in this topic, although being of a 

considerable interest in theory and applications, was considered much less in the literature (see (Bryson & 

Johansen 1965, Glizer 1984)). In the present paper, a finite horizon LQG control problem with a small 

noise in the observation equation is considered. This problem is analyzed by using a singular perturbation 

technique. In (Glizer 1984), such a technique was developed for an asymptotic analysis of the covariance 

matrix of the filtering error in a finite horizon linear optimal filtering problem with a small noise in the 

observation. In the present paper, we analyze a limit behavior of the optimal value of the cost functional 

in the considered LQG problem.  

 

2. Problem Statement 
Consider the controlled system  

],[0,,=(0)),()()(=)( 0 fttXXtvtutXtX BA  (1) 

  

],[0,),()(=)( ftttwtXtz C     (2) 
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 where 0>ft  is a given final time moment; 
nRtX )(  is a state vector; 

rRtu )(  is a control; 

qRtz )( , )<( nq , is an observed output; 0>  is a small parameter, 1)<<( ;  ,  , C  are given 

constant matrices of corresponding dimensions; 0X  is a Gaussian random vector with the average 0X  

and the symmetric positive semidefinite covariance matrix 0F ; )(tv  and )(tw , ][0, ftt  are Gaussian 

white noise vectors with zero averages and the covariances )()(  ttD  and )()(  ttR , respectively; 

the matrix )(tD  is symmetric positive semidefinite, while the matrix )(tR  is symmetric positive definite 

on the interval ][0, ft ; the random vector 0X  and the vector stochastic processes )(tv  and )(tw  are 

independent of each other. 

The cost functional, to be minimized by the control )(tu  basing on the knowledge of the output (2), 

is  

,))()()()()()(()()(=)(
0 













  dttuttutXttXtXtXEu TT

f
t

ff

T QPGJ  (3) 

 

where ][E  denotes the mathematical expectation; the matrix G  is symmetric positive semidefinite; the 

matrix )(tP  is symmetric positive semidefinite for all ][0, ftt ; the matrix )(tQ  is symmetric positive 

definite for all ][0, ftt ; the superscript T  denotes the transposition. 

In what follows, we assume: 

 (A1) the matrix C  has full rank q ; 

 (A2) the matrix-valued function )(tD  is twice continuously differentiable on the interval ][0, ft ; 

 (A3) the matrix-valued functions )(tR , )(tP  and )(tQ  are continuously differentiable on the 

interval ][0, ft ; 

 (A4) 0))((det Tt CCD  for all ][0, ftt ; 

 (A5) 0=0CF . 

Let cC  be a complement matrix to the matrix C , i.e., the dimension of cC  is nqn  )(  and the 

block matrix 
TTT ),( c CC  is nonsingular. Consider the matrices  

 

.))(,(=)(,))(()(=)( 1

cc

TTTTT ttttt LCMCCCDCDCCL   (4) 

 

 Due to results of Glizer, Fridman & Turetsky (2007), the matrix )(tM  is nonsingular for all 

][0, ftt . The latter, along with the assumption (A2) and the equation (4), means that the matrix-valued 

functions )(tM  and )(1 tM  are twice continuously differentiable on the interval ][0, ft . Let us transform 

the state variable in the optimal control problem (1) – (3) as follows: ),()(=)( 1 txttX M  where )(tx  is a 

new state variable. Due to this transformation, we obtain the following optimal control problem, 

equivalent to the one (1) – (3):  

 

],[0,,=(0)),()()()()()(=)( 0 fttxxtvttutBtxtAtx  M  (5) 

 

),()(=)( twtCxtz    (6) 
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,))()()()()()(()()(=)(
0 













  dttutQtutxtPtxtGxtxEuJ TT

f
t

ff

T
 (7) 

 

 where )()()()(=)( 11 tttttA   MMAMM  , BM )(=)( ttB , ,0)(=)(= 1

qItC CM , 

)())((= 11

f

T

f ttG  GMM , )()())((=)( 11 ttttP T  MPM , )(=)( ttQ Q , 00 (0)= Xx M , qI  is the 

identity matrix of the dimension q ; 0x  is a random Gaussian vector with the average 00 (0)= Xx M  and 

the covariance  

(0).(0)=,
0

00
=(0)(0)= 000

TTF LFLMFM 









 (8) 

 

 Since the matrices G , )(tP  and 0F  are symmetric positive semidefinite, then the matrices G , 

)(tP  and   are symmetric positive semidefinite. 

In the sequel, of the paper, we deal with the optimal control problem (5) – (7). We call this 

problem the Original Optimal Control Problem (OOCP). Our objective is to establish the existence of the 

limit (as 0 ) of the optimal value of the cost functional in the OOCP, and to calculate this limit 

value. 

 
3. Control Optimality Conditions for the OOCP 

By using results of Kwakernaak & Sivan (1972a), Bryson & Ho (1975), Sage & White (1977), 

we obtain that, for a given 0> , the optimal control ))(ˆ,(=)( * txtutu   in the OOCP has the form  

 

),(ˆ)()()(=))(ˆ,( 1* txtRtBtQtxtu T   (9) 

 

 where the nn -matrix-valued function )(tR  is the unique solution of the terminal value problem for the 

Riccati equation  

 

.=)(],[0,),()()()()()()()()(=)( 1 GtRtttPtRBtQtBtRtRtAtAtRtR ff

TT    (10) 

 

 Note that the matrix )(tR  is symmetric positive semidefinite. 

The vector-valued function )(ˆ tx  satisfies the initial value problem  

 

,(0)==(0)ˆ

],[0,),()()()(
1

))(ˆ,()()(ˆ)),()()((=)(ˆ

00

1

2

*

Xxx

tttzttCtKtxtutBtxtStKtAtx f

T

M

R  


 


 (11) 

 

 where )()()()(1/=),( 12 tCttCtS T R ; the nn -matrix-valued function )(tK  is the unique solution 

of the initial value problem for the Riccati equation  

 

.=(0)],[0,),()(),()()()()()(=)( 0FKtttDtKtStKtAtKtKtAtK f

T    (12) 

 



 

62-4 

The nn -matrix-valued function )(tD , appearing in (12), has the form  

).()()(=)(,)(=)(,
)(0

0)(
=)()()(=)( 21

2

1
ttttDttD

tD

tD
ttttD TTT LDLCCDMDM 








 (13) 

 

Note that the matrix )(tK  is symmetric positive semidefinite. Note also, that the nn -matrix-

valued function ),( tS  can be represented in the block form  

 

.
00

0)/(
=),(

21













  


t
tS

R
  (14) 

 

The optimal value of the cost functional in the OOCP has the form  

 

.)()()()()(),()(tr(0)=
00

0 

 

0 

*














  dttKtPtGKdttRtKtStKxRxJ

f
t

f

f
t

T   (15) 

 

In this expression, only the matrices ),( tS  and )(tK  depend on  . Therefore, in order to study a 

behavior of 
*

J  for 0 , one has to study such a behavior of the matrix )(tK . 

 

4. Asymptotic Behavior of )(tK  

Due to (14), the right-hand side of the equation (12) has singularity for 0= . In order to remove 

this singularity, we look for the solution ),(=)( tKtK  of the problem (12) in the form  

 

,
),(),(

),(),(
=),(

32

21















tKtK

tKtK
tK

T
  (16) 

 

 where the matrices ),(1 tK , ),(2 tK  and ),(3 tK  have the dimensions qq , )( qnq   and 

)()( qnqn  . 

Let us also partition the matrix )(tA  into blocks as follows:  

 

,
)()(

)()(
=)(

43

21










tAtA

tAtA
tA   (17) 

 where the blocks )(1 tA , )(2 tA , )(3 tA  and )(4 tA  have the dimensions qq , )( qnq  , qqn  )(  

and )()( qnqn  , respectively. 

Based on the singular perturbation techniques approach (Yackel & Kokotovic 1973, Shinar, Glizer, 

& Turetsky 2014), we obtain the following proposition.  

Proposition 1. Let the assumptions (A1) – (A5) be valid. Then, there exists a positive number 0  

such that, for all ](0, 0  , the blocks ),( tKi , 1,2,3)=(i  of the solution (16) to the problem (12) 

satisfy the inequalities  

 

],[0,,)(),(1,2;=,/=,))()((),( 33 f

ob

j

o

jj ttatKtKjtaKtKtK    (18) 



 

62-5 

 where   denotes the Euclidean norm of a matrix; 0>a  is some constant independent of  ; the 

qq -matrix-valued function )(1 tK o
 has the form  

 

  ),()()()()(=)( 1/21/21/2

1

1/21/2

1 tttDtttK o RRRR 
  (19) 

 

and the superscript "1/2" denotes the unique symmetric positive definite square root of a symmetric 

positive definite matrix, the one "- 1/2" denotes the square root of an inverse matrix; the )()( qnqn 

-matrix-valued function )(3 tK o
 is the unique solution of the initial value problem for the Riccati equation  

 

;=(0)],[0,),()()()()()()()()()(=)( 3232

1

12343343   o

f

oToTooo KtttDtKtAtDtAtKtAtKtKtAtK  (20) 

 

 the )( qnq  -matrix-valued function )(2 tK o
 has the form  

 

);()())()((=)( 32

1

12 tKtAtKttK ooo R   (21) 

 

 the pair of the matrix-valued functions )}(),({ 21  bb KK  is the unique solution of the initial value 

problem  

0,),((0))()((0)(0)(0)(0))(=)/( 1

1

11

1

11

1

11    bbboobb KKKKKKddK RRR  (22) 

  

0,),((0))()((0)(0)(0)(0))(=)/( 2

1

12

1

12

1

12    bbboobb KKKKKKddK RRR  (23) 

  

(0).=(0)(0),=(0) 2211

obob KKKK    (24) 

 The solution of (22) – (24) satisfies the inequalities )(exp)(   cK b

j , 0 , 1,2=j , with 

some positive constants c  and  . 

 

5. Limit Behavior of *

J  

Let us partition the matrices G  and )(tP  into blocks as follows:  

 

,
)()(

)()(
=)(,=

32

21

32

21


















tPtP

tPtP
tP

GG

GG
G

TT
  (25) 

 

 where the blocks 
1G  and )(1 tP  are of the dimension qq ; the blocks 

2G  and )(2 tP  are of the 

dimension )( qnq  ; the blocks 3G  and )(3 tP  are of the dimension )()( qnqn  . 

Consider the block matrix ))(),((=)( 21 tKtKt ooo

K . Now, by using the equations (15), (16) and 

Proposition 1, we obtain the following theorem.  

Theorem 1. Let the assumptions (A1) – (A5) be valid. Then, there exists a finite limit (as 0 ) 

of the optimal value of the cost functional in the OOCP. This limit has the form  



 

62-6 

 

.)()()()()()())((tr(0)=lim=
~

33

0

33

1

0

0 

 

0 

*

0

*














 





dttKtPtKGdttRtttxRxJJ o

f
t

f

oo

K

To

K

f
t

T R


 (26) 

 

6. Interception Problem Example 
In this section, the theoretical results are applied to a planar interception problem where both 

vehicles, the interceptor (pursuer) and the target (evader), have the first-order dynamics. In Fig. 1, the 

schematic engagement geometry is depicted. The points ),(=)( PP yxtP  and ),(=)( EE yxtE  are current 

coordinates of the pursuer and the evader, respectively; 
Pa , 

Ea  are their lateral accelerations; 
EP  ,  are 

the respective angles between the velocity vectors and the x -axis (initial line of sight); )(t  is the line-

of-sight angle. 

 
Fig.  1.  Interception geometry. 

 

       Based on the small angles assumption (Shinar, Glizer & Turetsky 2013), the trajectories of the 

pursuer and the evader can be linearized with respect to the nominal collision geometry, leading to a 

constant closing velocity cV . The final interception time ft  can be easily calculated for given initial range 

0r  and interception lethality radius ir : cif Vrrt )/(= 0  . This leads to the following linear model for  

ftt 0 : 

 

0,=(0),)/(=

0,=(0),)/(=

,=(0),=

0,=(0),=

444

3333

2022432

1121

xxux

xxvx

xxvxxx

xvxx

P

E





















  (27) 

 where 
PE yyx =1

 is the relative separation normal to the initial line of sight; 
2x  is the relative normal 

velocity; 3x  and 
4x  are the lateral accelerations of the evader and the pursuer, respectively, both normal 

to the initial line of sight; 
E , 

P  are the respective time constants; 
00

20 = PPEE VVx   ; 
0

E  and 
0

P  are 

initial values of 
E  and 

P , respectively. 
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The controls 3v  and u  of the evader and the pursuer, respectively, are the vehicles’ acceleration 

commands in the y -direction. Since the behavior of the evader is unknown to the pursuer, the control 3v  

can be modeled by a Gaussian white noise with zero average and the covariance )()(3  ttd ,                

( 0)(3 td ), (Fitzgerald & Zarchan 1978). The functions 
1v  and 

2v  model the process noise in the 

equations for the relative separation and the relative velocity, respectively. They are assumed to be 

Gaussian white noises with zero averages and the covariances )()(1  ttd , ( 0>)(1 td ), and 

)()(2  ttd , ( 0)(2 td ), respectively. The functions )(tdi , 1,2,3=i , are continuously differentiable 

for ][0, ftt . It is assumed that 
1v , 

2v  and 3v  are independent stochastic processes. 

It is assumed that only the line-of-sight angle )()/()( 1 trtxt  , where )(tr  is the current distance 

between the vehicles, is measured, and the measurement noise is small. Thus, the measured variable is 

)()()/(=)( 1 ttrtxt   , where )(t  is a Gaussian white noise with zero average and the covariance 

)()(  ttd , ( 0>)(td ). The function )(td  is continuously differentiable for ][0, ftt . By 

multiplying )(t  by )(tr  and denoting )()(=)( ttrtz  , )()(=)( ttrtw  , the observation equation 

becomes  

 

).()(=)( 1 twtxtz    (28) 

 

The interception process is evaluated by the performance index  

,)()(=)( 2

0

2

1













  dttutxEuJ

f
t

f    (29) 

 where 0>  is a control penalty coefficient. 

Thus, this interception problem can be described in the form of the OOCP (5) – (7) for  

 

),0),(),(),((=)(),(0,0,0,1/=)(,

1/000

01/00

1100

0010

=)( 321 tvtvtvtvtBtA T

P

T

P

E































 (30) 

  

.=)(0,=)({1,0,0,0},diag=)((1,0,0,0),=)(,1},{1,1,1/diag=)(  tQtPtGtCt EM  (31) 

 

In Table 1, the values 
*

J , )( *

uJ , |])([| 1 ftxE  and 
*~

J  are presented for decreasing   and for 

0.2== EP   s, 0.01=  s
3
, 2000=0r  m, 5=ir  m, 0.1)(1 td  m

2
/s

2
, 0.1)(2 td  m

2
/s

4
, 

50)(3 td  m
2

/s
4

, 5=20x  m/s. The calculation was carried out for two values of the closing velocity: 

500=1cV  m/s and 250=2cV  m/s, yielding 3.99=1ft  s and 7.98=1ft  s, respectively. The values of 

*

J  and 
*~

J  are calculated by (15) and (26), respectively. The values of |])([| 1 ftxE  and )( *

uJ  are 

obtained by (27) and (29) as the average of the corresponding values in 100=N  Monte Carlo simulation 

runs. It is seen that for both closing velocities, 
** ~

JJ   and 
** ~

)( JuJ   for 0 . It is also seen that 
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the average miss distance |])([| 1 ftxE  decreases for decreasing  . Moreover, its value is smaller than the 

lethality radius ir . 

Table  1. Comparison of 
*

J , )( *

uJ  and 
*~

J . 

 

 3.99=ft  98.7=ft  

  
*

J  )( *

uJ  |])([| 1 ftxE  *~
J  

*

J  )( *

uJ  |])([| 1 ftxE  *~
J  

310
 15.64 12.06 1.79 

5.76 

13.09 11.71 1.61 

6.82 

    
410

 7.48 7.02 1.13 7.83 7.96 1.14 

55 10  6.73 6.51 1.05 7.33 7.61 1.09 

    
510

 5.99 6.25 0.91 6.97 6.77 0.95 

65 10  5.89 5.62 0.93 6.90 6.29 0.83 

  
7. Conclusions 
          In this paper, the finite-horizon LQG control problem with small observation noise was considered. 

The convergence of the optimal value of its cost functional was established for the observation noise 

intensity tending to zero. The limit value was derived. Based on these results, the example of the 

interception of a maneuvering target was solved. 
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