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Abstract - In the present study, a Nano mechanical resonator is designed and used for the process of virus 

detection. The biosensor is designed using the single-walled carbon nano-tube (SWCNT). The investigations are 

done on the vibrations of the cantilevered sensor, when the virus is present at the tip. The cantilevered SWCNT will 

be able to identify the virus that may be present at the tip of the resonator. The calculations for determining the 

natural frequency are done using the finite difference method. It is found that the designed sensor is able to provide 

measureable frequencies even when a light virus approaches the cantilever. The sensitivity of the entire system is 

found to be able to detect the virus in the zeptogram scale. 
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1. Introduction 
Nano Electro Mechanical Systems (NEMS) technology has gained a significant interest in medical 

and environmental diagnostics due to its potential performance and cost advantages. The developed 

NEMS can detect small concentration of target molecules (viruses) and have better sensitivity than 

conventional biosensors. Carbon nanotubes (CNT) and Boron nitride nanotubes (BNNT) are the 

promising candidates for such kind of diagnostics because of their unique electronic structure and 

properties, as previously shown (Wan et al., 1997). CNTs are highly stable in terms of thermal and 

chemical exposure. These properties along with their mechanical properties and thermal conductivity 

make CNTs a promising candidate for biosensors. In addition CNT has a very high aspect ratio, it is 

therefore much easier to make large distortion of carbon bonds, which in turn gives large elongation of 

the nanowire to have better sensitivity. 

  

2. CNT as a Cantilever 
A cantilever can be used to measure minute deformations due to surface stress, heat flow, differential 

expansion, charge release, mechanical, electrical or magnetic forces, as shown by Misiacos et al. (2009). 

Surface stress offers a means to deflections facilitating the measurement of physical or biochemical 

interactions because adsorption or binding applies expanding intramolecular forces on the coated surface 

causing to bend the cantilever. Even due to chemical, physical or environmental factors it produces the 

deflection in nanometer scale. However, depending on the mechanical properties of the device, the 

sensing (capacitance, piezoresistance or resonance frequency) principle varies. Also based on the 

parameters used for measuring the change, it can be either cantilever bending or shifts in the resonance 

frequency.  A cantilever can be used for pH sensing, DNA hybridization, gas sensing, liquid sensing and 

protein detection. Knowles et al. (2009) have designed a microcantilever for protein accumulation where 

the surface stress generated by the interaction between protein  and the coated beam to detect protein. Li 

et al. (2008) have designed a cantilever array with receptor molecules to simultaneously detect cancer and 

cardiac markers. 
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 CNT provides good performance in terms of deflection and chemical sensitivity. The sensitivity of 

the cantilever biosensor is greatly influenced by the proper surface functionalization, and the selectivity is 

achieved through immobilizing specific receptors on the top of the surface. Unlike other cantilever 

biosensors, where aluminum thin films, polysilicon and SU8 are used as the material for cantilever, here 

CNT beam offers greater flexibility for the surface functionalization and flexible  mechanical properties, 

as previously shown (Nugaeva el al., 2005)  

 

3. Vibrational Analysis 
The aim of this study is to develop the sensor based on SWCNT so as to be able to identify the virus 

that may be attached at the tip of the nanotube. In order to perform the vibrational analysis of the system 

“SWCNT and virus,” we need information about the masses of various viruses. Table 1 contains 

information about the masses of various viruses. The viruses can be analyzed as concentrated point mass 

when its mass m is much less than the mass M of the SWCNT for the stipulated length of the sensor, 

whereas the virus should be treated as heavy mass when m is either comparable to M or exceeds it. In this 

framework, as shown by Haener (1958) the characteristic equation for the constant cross section 

cantilever beam with an additional mass at its free ends is as follows:  
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, EI is the stiffness in bending, M is the total mass of the beam, m is the 

additional mass, n is the number of waves in 4L for the cantilever beam, L is the length of the beam, IG is 

the moment of inertia of the mass m, and n is the nth frequency in rad/s. Fig. 1 gives the pictorial 

representation of the SWCNT cantilever with the virus at the tip. 

 

 

 
 

 

 

Fig. 1 SWCNT based cantilever with the virus at the tip. 
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Table. 1. List of some Viruses and their associated mass. 

 

 

 

Vibrational analysis of the SWCNTs with added virus depends on the ratio of the mass of the virus to 

that of the attached nanotube. Hereinafter, we will consider cases associated light virus.  

The governing differential equations for free vibration of the SWCNTs read as 
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where, E is the modulus of elasticity, taken as 1 TPa, x is the axial coordinate, t is the time, w (x , t)  

is the transverse displacement, I  is the moment of inertia, and A is the cross-sectional area of the 

nanotube. For the case µ<<1, we can treat the virus as a concentrated mass. The boundary conditions for 

the fixed-free SWCNT with the light virus on the tip of the nanotube are 
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where, L is the beam length. For the case when µ is of order unity or exceeds it, namely, when the 

mass attached to the beam tip is comparable with the mass of the SWCNT or is large in comparison to the 

beam’s mass, one cannot treat the virus as a concentrated mass and neglect its rotary inertia. In particular, 

the boundary conditions, for the fixed-free SWCNT with the heavy virus at the end of the nanotube as 

shown by Soedel (1984), are   

 

 ( )      
   (   )

   
 (      )    

   (   )

   
   

 

   ( )      
   (   )

   
  

   (   )

   
   

   (   )

     
                                                             ( ) 

 

where, IG is the virus mass moment of inertia about its mass center and a denotes the distance 

between the virus center of mass and the tip of the beam. 

 

4. Vibration Frequencies of SWCNT with Light Virus at the End of the Nanotube: 
Finite Difference Method 
In this section, we use the finite difference method (FDM) to analyze the problem of vibration 

frequencies of a SWCNT with light virus at the end of the nanotube. We treat the virus as a concentrated 

mass (µ<<1). The finite difference method proceeds by replacing the derivatives in the differential 

equations by finite difference approximations, as shown by Elishakoff et al. (2011). Instead of the 

differential equations, this procedure yields a system of algebraic equations that must be solved. The 

problem’s domain is divided into a uniform grid of points or nodes spaced at distances equal to h=L/N, 

where N is the number of sections into which the beam of length L is divided. By using the central 

difference expression, the first and fourth derivatives of the displacement at a point j can be written as 

follows, respectively, 

 

Sequel No. Name of the Virus Mass mj (Da) 

1. Human Adenovirus Type 5 3.6 x 10
9
 

2. Grouper Iridovirus 4.48 x 10
8
 

3. Vaccinia Virus 1.72 x 10
8
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where, j is the number of the node with coordinate xj, where the displacement is expressed. 

 Equation (2) can be expressed at each node j as follows 
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Equation (6) is modified to the following form  
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where, the coefficient α is defined as  
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In order to find the vibration frequencies, we have to rewrite the boundary conditions specified by 

equation (3) in terms of central differences. In this circumstance, we obtain the following expressions: 
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Equation (7) must be satisfied at each nodal point j  and it can be put in the matrix form 

 

                                                                                                                                                                             (  ) 
 

Where, A is an N × N matrix and w= (w
(1)

, w
(2)
,…, w

(N)
)

T 
is the nodal displacement vector. The 

determinant of matrix A must vanish in order to obtain the unknown roots ωj .To illustrate the procedure 

we consider in detail the case when N = 2. 

For N = 2 the boundary conditions defined by equation (9) leads to 
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By applying the boundary conditions equation (7) can be expressed in the matrix form as in equation (10) 

with 
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In order to have a nontrivial solution, the determinant of this matrix must be equal to zero, resulting in the 

frequency equation 
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The values of the coefficients r0, r1 and r2 is given as follows 
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The solution of the fourth order polynomial equation (13) gives the desired natural frequencies. By 

increasing the number of segments that discretize the beam, the finite difference method will provide 

exact solution, as shown by Gaurav et al. (2014). Table 2 gives the specifications of the SWCNT and the 

results for ω1 for various viruses are listed in Table 3. 

 
Table 2. Specifications of the SWCNT 

 
Density 

(g/m
3
) 

 

Young’s 

Modulus (TPa) 
Length (µm) Mass (g) 

Inner Radius 

(Ri)(nm) 

Outer Radius 

(Ro)(nm) 

2.3 x 10
6 

1 5.55 9.544x 10
-18

 0.18           0.52 

 
 

Table 3. Natural frequencies of SWCNT with the Virus at the end of the nanotube 
 
Sequel No. Name of the Virus Mass mj (Da) Finite Difference method (N=2) (Hz) 

1. Human Adenovirus Type 5 3.6 x 10
9
 3.67085 x 10

5
 

2. Grouper Iridovirus 4.48 x 10
8
 3.66702 x 10

5
 

3. Vaccinia Virus 1.72 x 10
8
 3.67084 x 10

5
 

 

5. Conclusion 
In this paper we analyzed the detection of virus using a SWCNT. The natural frequency of the 

SWCNT has been calculated using the finite difference method, in the case when the virus is at the tip of 

the nanotube. Three viruses have been chosen in order to perform the study. The natural frequency is 

found to be increasing with the increase of the mass of the virus present at the tip of the nanotube. The 

frequency is found to be in the measureable range even when a very light virus is present. In future, this 

method can be used to detect viruses with very high precision and accuracy. 
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