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Abstract - The aim of this paper is to study spin-wave excitations in two-dimensional nanodots. We use a discrete 

dipole model taking into account the nearest-neighbour exchange and dipolar interactions. Magnetic configuration is 

assumed to form an in-plane vortex (circular magnetization). We examine the dependence of the frequencies and 

profiles of normal spin-wave modes versus the dipolar-to-exchange interaction ratio d, the size of the dot L, and the 

symmetry of the 2D lattice, from which the dot is cut. Special attention is paid to some particular modes, including 

the lowest-frequency mode and the fundamental mode, an analogue of the uniform excitation, the frequency of 

which proves almost independent of d. For the lowest mode different profiles are observed. Various types of 

localized spin waves prove responsible for the transition to a new magnetic configuration. Far from the critical value 

of d azimuthal modes are the lowest with azimuthal number being the compromise between exchange and dipolar 

interactions. Finally, we study the hybridization of the modes, including the multi-mode hybridization, and explain 

the selection rules. 
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1. Introduction 
In magnetic systems, taking into account both the short-range and long-range interactions results in a 

variety of interesting effects: causes the complete bandgap to open in magnonic crystals (Krawczyk et al., 

2002; Kłos et al., 2012; Mamica et al., 2012a, b; Romero Vivas et al., 2012), is responsible for the 

splitting of the spectrum into subbands in patterned thin films (Krawczyk et al., 2011; Pal et al., 2012), or 

results in surface and subsurface localization in thin films with natural surface (Puszkarski et al., 1998; 

Mamica et al., 1998, 2000). The competition between the local exchange and long-range dipolar 

interactions has a significant influence on the spin-wave spectrum and leads to a variety of stable and 

metastable magnetic configurations. In magnetic nanodots with a thickness small enough with respect to 

their diameter one of these configurations is the vortex state (Metlov and Lee, 2008), the potential 

applications of which include microwave-frequency oscillators (Guslienko, 2012), frequency 

multiplication (Demidov et al., 2011), magnetic nanoparticles trapping (Donolato et al., 2009), or data 

storage and information processing (Cowburn and Welland, 2000). In all of these applications a crucial 

role is played by spin waves. They also have a significant influence on the stability of the magnetic 

configuration (Mozaffari and Esfarjani, 2007), even if the system is smaller than the characteristic 

exchange length (Rohart et al., 2010). In the present paper we study the spin-wave spectrum of the two-

dimensional (2D) nanodot with particular attention paid on two special modes in the spectrum: the 

lowest-frequency mode and the fundamental mode, an analogue of the uniform excitation. 

The lowest mode is especially important in metastable vortices, in which it plays a role of a soft 

mode responsible for the transition to a different magnetic configuration (Depondt, et al., 2013; Mamica 

et al., 2014). Both experimental studies and micromagnetic simulations reported the lowest spin-wave 

mode to be an azimuthal mode of different order (Buess et al., 2005), a localized mode (Zhu et al., 2005), 

or even the fundamental mode (Wang and Dong, 2012). In the present paper we demonstrate that, besides 

the vortex itself, also this richness of the observed spin waves results from a compromise between the 

dipolar and exchange interactions. We show that for a critical value of the dipolar-to-exchange interaction 
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ratio, for which the vortex state loses its (meta)stability, the lowest mode is strongly localized at the dot 

centre. Beyond this critical situation, the lowest mode is an azimuthal mode of the order depending on the 

dipolar to exchange interaction ratio as well as the size of the dot. 

We also analyze the multi-mode hybridization in which fundamental mode is involved. The latest 

studies show a major role of mode hybridization in plasmonic devices (Ju et al., 2013). The issue also 

affects significantly the profiles of the hybridizing modes, which is especially important in the context of 

the crucial role of the excitation profile for the effective switching of the vortex core (Bauer et al., 2014). 
Finally, we address the influence of the symmetry of the lattice the dot is cut out. 

 

2. The Model 
The object of our study is a circular dot cut out of a 2D lattice with elementary magnetic moments 

(spins) in its sites. A system thus defined is naturally discrete, without recourse to artificial discretization 

applied to continuous systems, e.g. in micromagnetic simulations. Obviously, the boundary of such dot is 

not perfectly circular, thus by ‘circular’ we understand a system cut out by means of circles. The edge 

cannot be smoothed; its smoothness is related to the size of the dot (measured in lattice constant units). 

The dynamics of a single magnetic moment MR, R being the position vector, is considered in the 

linear approximation, assuming |mR| << |MR|, |M0,R| ≈ |MR| and mR  MR where M0,R and mR are the static 

and dynamic component of the magnetic moment, respectively. To describe the time evolution of mR, 

oscillating harmonically with a frequency , we use the damping-free Landau-Lifshitz (LL) equation 

taking into account the dipolar and exchange interactions. Since the Gilbert damping term introduces only 

second-order corrections to the spin-wave frequencies, we can expect that in systems based on Py dots, 

which are the most often studied experimentally, the Gilbert damping parameter is below 0.01 (Hiebert et 

al., 1997; Aliev et al., 2009). Thus, its influence on standing spin-wave excitations is negligible. 

After linearization of the LL equations we obtain a system of equations for the in-plane and out-of-

plane coordinates of the dynamic component of the magnetic moments. Numerical diagonalization of the 

corresponding eigenvalue problem yields the frequency spectrum of the spin-wave excitations, and the 

spin-wave profiles, i.e., the distribution of the in-plane (mr) and out-of-plane (mk) amplitudes of 

precession of the elementary magnetic moments. For more details please see our previous papers 

(Mamica et al., 2012c, 2014). 

It is important to notice, that there are no simulations performed in our approach. The magnetic 

configuration is assumed to be an in-plane vortex: each magnetic moment in the system lies in the plane 

of the dot perpendicularly to its radius. Obviously, such a configuration may be unstable, in which case, 

however, zero-frequency modes, being nucleation modes responsible for magnetization reconfiguration, 

will occur in the spin-wave spectrum. The lack of zero-frequency mode implies the (meta)stability of the 

assumed magnetic configuration. On the other hand, if damping is neglected, only purely real solutions 

will be physical. Thus, frequencies with a nonzero imaginary part will indicate that the assumed magnetic 

configuration is unstable (Rivkin et al., 2005). These two criteria are equivalent, which is reflected in our 

results: only frequencies with zero real part have a nonzero imaginary part. In comparison with 

simulations this method allows a relatively quick exploration of different magnetic states. The advantage 

is also obtaining the spin-wave frequencies and profiles directly from diagonalization, without recourse to 

the Fourier transformation used in time-domain simulations. 

Another advantage is that there is only one material parameter in the adopted model, namely the 

dipolar-to-exchange interaction ratio d, defined as: d = (gB)
20 / (8JaNN

3
), where g is the g-factor, B the 

Bohr magneton, 0 the vacuum permeability, aNN the nearest-neighbour distance, and J the nearest-

neighbour exchange integral. In the case of the square lattice considered in this paper aNN is the lattice 

constant. By the above definition d only depends on microscopic parameters. Thus, the stability of the 

assumed magnetic configuration will depend not only on d, but also on the structure of the system, i.e. its 

size and shape as well as the lattice from which it has been cut out. 
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Fig. 1. Spin-wave frequency vs. the dipolar-to-exchange interaction ratio d (in logarithmic scale) for a 2D circular 

nanodot of diameter L = 101 lattice constants; the magnetic moments are assumed to form an in-plane vortex. The 

colour assignment of the first 7 mode lines is indicated at the left; the colours repeat cyclically for successive modes. 

The lack of zero-frequency modes for d1 < d < d2 indicates the (meta)stability of the assumed configuration. 

 

3. Results 
A sample dependence of the spin-wave spectrum on the dipolar-to-exchange interaction ratio d is 

shown in Fig. 1. The results are obtained for an in-plane vortex in the dot of diameter L = 101 lattice 

constants (8000 spins within the dot). The dependence clearly indicates the existence of three ranges of d. 

In two of them, i.e. below d1 and above d2, the frequency of the lowest mode is zero and according to the 

above discussion assumed magnetic configuration in unstable. On the other hand, for d1 < d < d2 the 

absence of the zero-frequency modes indicates that the in-plane vortex is (meta)stable. This picture 

reflects the nature of the magnetic in-plane vortex, which appears as a compromise between the exchange 

and dipolar interactions. When the exchange interaction is strong enough (d is too low) the out-of-plane 

component of the static magnetic moment rises at the vortex centre and the core-vortex is formed 

(Mozaffari and Esfarjani, 2007). This kind of spin reorientation we will refer to as exchange-driven 

reorientation. If the exchange interaction is too weak (d is too large) the dipolar interaction lead to a 

multi-domain or multi-vortex state and a dipolar-driven reorientation occurs (Depondt et al., 2011). The 

stability of the in-plane vortex vs. the size and the shape of the dot has been studied in our previous 

papers (Mamica et al., 2012c, 2013a, b). There are also two special modes in Fig. 1 the behaviour of 

which differs from the rest of the spectrum: the lowest-frequency mode and the fundamental mode. 

 

3. 1. The Lowest-frequency Mode 
For the majority of modes in Fig. 1 the frequency decreases with increasing d and this decreasing 

slows down for higher d. For the lowest mode the frequency vs. d dependence can be divided into three 

ranges. In the vicinity of the critical value d1 the frequency increases very rapidly until the mode crossing 

at d ≈ 0.1237. Then its behaviour is similar to other modes up to d ≈ 1.0. Starting from this point the rate 

of the frequency decreasing is growing and near the critical value d2 is very high again. 

In Fig. 2a we show the lowest mode frequency vs. d dependence in dots of different size. The 

character of presented curves is very similar. Moreover, the first part of this dependence is exactly the 

same regardless the size of the dot; the only difference is the point of the mode crossing. To explain this 

result in Figs. 2b and 2c we show the evolution of the spin wave profile for the lowest mode in two dots: 

L = 51 and L = 101. In both cases for d ≈ d1 the profile is strongly localized at the dot centre. In the 

vicinity of the critical value d1 this localized mode plays the role of the soft mode. Its frequency reaches 

zero for d = d1, and the mode becomes a nucleation mode, responsible for the magnetic reconfiguration of 

the system. The strong localization at the centre manifests the tendency of the system to form a vortex 

core with a nonzero out-of-plane static component of the magnetization. As d diverges from the critical 

value the in-plane vortex regains stability, and the mode in question is excited at increasing cost. This, in 

turn, results in a steep increase in its frequency. Additionally, the reorientation for d = d1 is due to 

exchange interactions, which are restricted to nearest neighbours. This means that strongly localized 

mode does not feel the borders and consequently its behaviour does not depend on the size of the dot. 
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Fig. 2. (a) Frequency of the lowest mode vs. dipolar-to-exchange interaction ratio d (in logarithmic scale) in dots of 

different diameter L. From the top down, successive curves correspond to L = 27, 37, 51, 73, and 101 lattice 

constants. Black squares mark the points of intersection of first- and second-order azimuthal modes. (b, c) Evolution 

of the lowest mode profile with d in dots of diameter 51 and 101, respectively.  

 

In the second range of d an azimuthal mode has the lowest frequency (Fig. 2). In this case the 

dependence of the frequency f of the lowest mode vs. the diameter L of the dot is approximately f ~ L
½
, 

which is in good agreement with analytical studies (Ivanov and Zaspel, 2005; Zivieri and Nizzoli, 2005). 

The azimuthal number of the lowest mode depends on both d and L. For the diameter L < 100 first order 

azimuthal mode (0,1) crosses localized mode and becomes the lowest. (We use common notation for the 

mode profile type with the radial number at first position and the azimuthal number at the second. In this 

labelling the localized mode is a (-1,0) mode, where -1 refers to a complex wave number in the radial 

direction.) For higher d next azimuthal mode (0,2) has the lowest frequency and smoothly becomes 

localized at the centre with growing d. Higher order azimuthal modes are not the lowest for any value of d 

in dots smaller than 100 lattice constants. 

The crossing points between azimuthal modes (0,1) and (0,2) are marked with black squares in 

Fig. 2. Except for the smallest dot, these points lie in a straight line which crosses the localized mode just 

above the lowest-frequency mode for L = 101, which means that for bigger dots (0,1) mode is not the 

lowest for any value of d. On the other hand, in the dot of L = 101 higher order azimuthal modes becomes 

the lowest in the spectrum with growing d: (0,3) at d ≈ 0.37 and (0,4) at 0.69. Above d ≈ 0.82 the lowest-

frequency mode has the azimuthal number 2 again, but its profile is concentrated near the high spin 

density lines (Fig. 2c, d = 0.9) and further increase in the value of d results in progressive localization of 

this mode at the centre of the dot (Fig. 2c, d = 2.0), similarly to the smaller dots. 

For a given value of d (fixed material) increasing the size of the dot results in increasing the order of 

the lowest azimuthal mode; such effect was observed experimentally by Buess et al. (2005) and in 

analytical calculations by Zivieri and Nizzoli (2005). 

In the light of the results presented above, modes with increasing azimuthal number m fall 

successively to the bottom of the spectrum as the dipolar interaction gains in importance with increasing d 

or growing diameter of the dot. The exchange interaction favours modes with m = 1. Thus, the 

competition between the dipolar and exchange interactions manifests itself in the profile of the lowest-

frequency mode. 
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Fig. 3. (a) Evolution of the fundamental mode vs. the dipolar-to-exchange interaction ratio d (in logarithmic scale) 

for the dot of the diameter L = 51. (b) Profiles of the fundamental mode for points marked with black squares in (a). 

(c) Profiles of three hybridized modes for d = 0.133 (dotted line in (a)). Additionally, the profile of the second (0,4) 

mode which is not involved in the hybridization is shown. 

 

3. 2. The Fundamental Mode 
The second mode different than the others in the spectrum in Fig. 1 is the fundamental mode with the 

frequency only slightly dependent on d. In Fig. 3 we show the evolution of its frequency (panel a) and 

profile (panel b) for the dot of diameter L = 51 (2032 spins). The profile has not nodal lines and therefore 

will be labelled as (0,0), but it is not uniform as well what results in the dependence of the frequency on d 

(for the uniform mode the frequency does not depend on d at all). Similar effect occurs in micromagnetic 

simulations due to the artificial discretization of the sample (Wang and Dong, 2012) however in our case 

it is natural consequence of the discreteness of the lattice. 

For growing d the fundamental mode frequency is almost constant while for other modes decreases 

thus several mode crossings and anticrossings occurs. The very special is the first anticrossing for d 

around 0.133 where three modes hybridize: these are fundamental, localized and one of two four-order 

azimuthal modes. Their profiles are shown in Fig. 3c together with the profile of the second (0,4) mode 

which is not involved in the hybridization. Fundamental mode hybridize with (0,4) azimuthal mode 

because of the same symmetry of the profile (compare Fig 3b, d = 0.112) but the choice of only one (0,4) 

mode means there is some additional condition for hybridization to occur. The second (0,4) mode is 

‘ignored’ because the nodal lines in its profile match the amplitude maximums of the fundamental mode. 

In the case of the azimuthal mode involved in hybridization its maxima of the same phase match the 

maxima of the (0,0) mode profile. Thus, the hybridization requires both the same symmetry of the modes 

and the matching of the in-phase anti-nodes in the azimuthal mode with the maximums in the 

fundamental mode. The same selection rule we found valid for other cases of the hybridization at d 

around 0.38, 0.65, and 0.9. 

While d continues to grow the maxima of the fundamental mode profile splits and its symmetry is 

doubled (Fig 3b, d = 0.295). Meanwhile, the fundamental mode crosses azimuthal modes of the symmetry 

which does not match its own symmetry: (0,5), (0,6) and (0,7). (Modes of fifth and seventh order are 

degenerated in pairs while frequencies of modes (0,6) are split. Please see next subsection for the 

explanation of this effect.) Then the symmetry of the fundamental mode is doubled and match the (0,8) 

azimuthal modes; next hybridization occurs for d = 0.35 – 0.42. Again, one of these modes is ignored and 

the other hybridize with (0,0) mode. Afterwards situation is repeated until d ≈ 1.0: fundamental mode 

hybridizes with one of (0,12) modes for d = 0.60 – 0.70 and one of (0,16) for d = 0.85 – 0.95. For d > 1.0 
the mode under the question loses its fundamental character; its profile has pronounced maximums and 

minimums, and its frequency noticeably depends on d. 
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Fig. 4. (a) Enlarged part of the spectrum shown in figure 3 with mode numbers given to the right. (b) Profiles of the 

eleven lowest modes for d = 0.15. For n = 9 the profile is modified a bit due to the hybridization with (0,0) mode. 

Frequencies of modes with even azimuthal number are split as a consequence of the symmetry of the square lattice 

the dot is cut out. 

 

3. 3. Influence of the Lattice Symmetry 
As it is already mentioned, modes of fifth and seventh order are degenerated in pairs, while these of 

sixth order are split. In Fig. 4 we examine this frequency splitting in more detail. Among the azimuthal 

modes shown in this figure those of odd order are degenerate in pairs. In contrast, the pairs of modes with 

an even azimuthal number are not degenerate. Their non-degeneracy is related to their symmetry, the 

same as that of the lattice from which the dot has been cut out. For example, one of the (0,2) modes 

(n = 3) has nodal lines along the high spin density lines while in the other (0,2) mode (n = 4) the high spin 

density lines coincide with anti-nodal lines. An analogical situation occurs in periodic structures, in which 

a band gap forms between two states at the boundary of the Brillouin zone if one state has nodes and the 

other anti-nodes in the potential wells. Moreover, as in the case of states at the boundary of the Brillouin 

zone, the frequency difference between two non-degenerate modes in a pair decreases with increasing 

azimuthal number. In the literature there are reports of lifted degeneracy of azimuthal modes in core 

vortices due to the coupling of the spin waves with the gyroscopic motion of the core (Hoffmann et al., 

2007; Guslienko et al., 2008). Since in my study I consider coreless vortices, coupling with the motion of 

the core is out of the question. The non-degeneracy is due to the fact that the dot has been cut out from a 

discrete lattice. It is the symmetry of the lattice that determines which modes have lifted degeneracy. 

Also the profile of the fundamental mode, since its nonuniformity is due to the discreteness of the 

lattice, reflects the lattice symmetry. This fact has a consequence in hybridization. In the case of square 

lattice considered in this paper fundamental mode hybridizes with azimuthal modes of fourth, eighth and 

twelfth order, i.e. with the azimuthal number divisible by four. On the other hand, for hexagonal lattice 

the fundamental mode profile has six-fold symmetry thus it hybridizes with azimuthal modes with 

azimuthal number divisible by six, what is shown in our paper devoted to hexagonal lattice (Mamica, 

2013b). Of course, the additional condition holds also for hexagonal lattice and only one azimuthal mode 

of proper symmetry is involved in hybridization.  

 

4. Conclusions 
The lowest-frequency mode has different character depending on the stability of the vortex state. Far 

from the critical value of the dipolar-to-exchange interaction ratio d azimuthal modes are the lowest with 

azimuthal number m being the compromise between exchange and dipolar interactions: exchange 

interactions prefer lower m while dipolar interactions favour higher m, regardless of whether their 

predomination is due to the material (d) or size (L) of the dot. Close to the critical value of d the localized 

mode is the lowest in dots and the uniform one in rings (see our papers devoted to rings (Mamica, 2013a, 

b). Thus the profile of the lowest mode carry information on the stability of the vortex. 
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The profile of the fundamental mode, an analogue of the uniform mode, has the same symmetry as 

the discrete lattice the dot is based on (compare our results concerning hexagonal lattice (Mamica, 

2013b)). As a consequence, with growing d, it hybridize with descending azimuthal modes of the same 

symmetry. Additional condition is coincidence of the maxima of the fundamental mode with the anti-

nodal lines of the same phase of the azimuthal mode. Also, the nonuniformity of the profile results in a 

slight dependence of the fundamental mode frequency on d. 

The symmetry of the lattice the dot is cut out is reflected in the symmetry of the fundamental mode 

and therefore has an influence on the order of azimuthal modes involved in hybridization. It also affects 

splitting of the frequency of azimuthal modes; for square lattice the degeneracy is lifted for modes with 

azimuthal number divisible by two, while for hexagonal one for those divisible by three. 
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