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Abstract – The mean of a response variable is commonly modelled by linear regression or generalised linear model where the error 

distribution is either Gaussian, binomial, Poisson or one from the exponential family. Furthermore, as the error variance is assumed to 

be identical for all observed data, the same applies to the dispersion parameter, which is usually estimated by the scaled Pearson chi-

squared statistic. The statistical inference on the model parameters becomes unreliable once these assumptions are violated. One way to 

address the issue of varying variance is to formulate dispersion models in which the expected dispersion is estimated by a generalised 

linear model. With the R package jmdem, we can fit the response mean and dispersion in a joint model. The advantage of this approach 

is that the two models are interlinked, and the estimates of both models are the arguments that maximises the joint likelihood function 

which reduces the computation effort significantly and enhances the quality of the estimator at the same time. 
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1. Introduction 
Each probability distribution is characterised by its parameters, most commonly the location and dispersion parameters 

as in the case of the Gaussian distribution. The estimation of the location parameter for the 𝑖th observation, usually 

represented by the response mean 𝜇𝑖, 𝑖 = 1, … 𝑛, using linear regression 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖, where 𝑋1, … , 𝑋𝑝 

are 𝑝 different non-random independent variables and 𝛽0, 𝛽1, … , 𝛽𝑝 are the unknown regression coefficients, is one of the 

most essential and common statistical techniques. The model errors 𝜖1, … , 𝜖𝑛 are assumed to be random and follow 

independently the same probability distribution as the response variable with zero expectation and constant variance 𝜎2. This 

also implies that the variance of the response variable ought to be constant for all observations in the entire sample. By the 

theory of generalised linear models (GLM) [3] [4], var(𝑦𝑖) is a composition of 𝜙𝑉(𝜇𝑖), where 𝜙 is the unknown dispersion 

parameter and 𝑉(𝜇𝑖) is the variance function well-defined by the distribution of the response variable 𝑦𝑖. To estimate 𝜙, the 

Pearson chi-square statistic has been suggested 

 

�̂� =
1

𝑛 − 𝑝 − 1
∑

(𝑦𝑖 − 𝜇𝑖)
2

𝑉(𝜇𝑖)
 (1) 

 

which is an aggregated statistic for the entire sample. The estimate �̂� also indicates that the dispersion parameter does not 

vary from observation to observation. Nevertheless, if this assumption is violated, the estimation of the standard errors of 𝛽𝑗, 

𝑗 = 0, … , 𝑝 can be biased. An approach to overcome this problem is a double generalised linear model proposed by Smyth 

[5]. 

 

𝑔(𝜇𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 (2) 

  

ℎ(𝜙𝑖) = 𝜆0 + 𝜆1𝑧𝑖1 + ⋯ + 𝜆𝑞𝑧𝑖𝑞 (3) 

 

The equations (2) and (3) together form the joint mean and dispersion effects model (jmdem). These are two generalised 

linear models in which the location and dispersion parameters are estimated by two sets of independent variables 𝑋1, … , 𝑋𝑝 

as well as 𝑍1, … , 𝑍𝑞. The link functions 𝑔(⋅) and ℎ(⋅) can be any arbitrary functions which map the response mean 𝜇𝑖 and 
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response dispersion 𝜙𝑖 to the real line. The parameters 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑝)
⊤

 and 𝝀 = (𝜆0, 𝜆1, … , 𝜆𝑞)
⊤

 are estimated by 

maximising the log-likelihood function of the exponential family given the design data matrix 𝑿, 𝒁 and response 

variable vector 𝒀: 

 

ℓ(𝜷, 𝝀 ∣ 𝑿, 𝒁, 𝒀) = ∑ {
𝑤𝑖

ℎ−1(𝒛𝑖𝝀)
[𝑦𝑖𝜃(𝜇𝑖) − 𝑏(𝜃(𝜇𝑖))] + log[𝑐(𝑦𝑖 , ℎ−1(𝒛𝑖𝝀))]}

𝑛

𝑖=1

 (4) 

 

where 𝜃𝑖 = 𝜃(𝜇𝑖) is the canonical parameter and 𝑏(⋅) is the cumulant function with the properties 𝜕𝑏 𝜕𝜃⁄ = 𝑏′(⋅)  = 𝜇 =
𝑔−1(𝑥𝑖𝛽) and 𝜕2𝑏 𝜕𝜃2⁄ = 𝑉(𝜇𝑖). Note that ℎ−1(𝒛𝑖𝝀) is another way to express the estimated individual dispersion 

parameter derived from (3). The function 𝑐(𝑦𝑖 , ℎ−1(𝒛𝑖𝝀)) is an arbitrary function that depends only on the response variable 

and the dispersion parameter, and not the response mean 𝜇𝑖. 

 

2. The jmdem Package in R 
The jmdem package [8] in R fits joint models for the mean and dispersion effects as defined (2) and (3) by maximising 

the log-likelihood function in (4). Suppose we have a data frame called “example.dat” that contains the variables 𝑦, 𝑥1, 𝑥2, 

𝑧1 and 𝑧2. To fit a joint mean and dispersion effects model in which the response variable is normally distributed, we can 

use the following syntax in R: 

 
model1 <- jmdem(mformula = y ~ x1 + x2, dformula = ~ z1 + z2,  

data = example.dat, mfamily = poisson(link = "log")) 

 

The jmdem syntax as shown in the above example is constructed in a very similar way as lm or glm that are used to 

fit linear models or generalised linear models. The main difference here is that jmdem contains two model formulas: the 

argument mformula is responsible for the fitting of the mean effects model and dformula for the fitting of the dispersion 

effects model. The equations of both the mean and dispersion effect models are written after the “~” operator with the 

corresponding independent variables connected by mathematical operators such as “+” or “-”, as well as “:”, if the 

interaction effect of two or more variables should be included. The variable written before “~” in mformula is the response 

variable. Note that there is no response variable for dformula since it is determined by either one of the following formulas 

 

𝑑𝑖 = 𝐷𝑖(𝑦𝑖 , 𝜇𝑖) = 2𝑤𝑖 ∫
𝑦𝑖 − 𝑡𝑖

𝑉(𝑡𝑖)

𝑦𝑖

𝜇𝑖

𝑑𝑡𝑖 

 

(5a) 

 

𝑑𝑖 = 𝑟𝑝𝑖
(𝑦𝑖, 𝜇𝑖) =

𝑤𝑖(𝑦𝑖 − 𝜇𝑖)2

𝑉(𝜇𝑖)
 

(5b) 

where 𝐷𝑖(𝑦𝑖, 𝜇𝑖) is the so called deviance component computed by the quasi-likelihood function which measures the 

difference of the individual likelihood evaluated at the observed and expected values of the response variable, respectively. 

The individual Pearson residual 𝑟𝑝𝑖
(𝑦𝑖 , 𝜇𝑖) as given in (5b) takes the standardised square distances of the response mean from 

its observed value into account. While the deviance component in (5a) is the commonly proposed approach [2] [7], the use 

of the individual Pearson residuals is briefly introduced in [3] and studied in detail in [6]. To specify the type of 𝑑𝑖 we can 

add the option “dev.type = c("deviance", "pearson")” into the jmdem function. 

 

Same as glm, jmdem allows us to specify the distribution family and link function for both the mean and dispersion 

effect models according to the characteristic of the data. In the above example, we assume the response variable to be Poisson 

distributed with logarithm link function. Note that the Gaussian distribution with identity link function is the default setting 

for mfamily and gamma distribution with log-link for dfamily. It is noteworthy that the jmdem package only integrates 

the same family objects for models provided by base R, which includes those distributions that are also used in glm such as 
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gaussian, binomial, Poisson, etc. Other commonly used distributions such as the negative binomial or Tweedie 

distributions cannot be specified in jmdem yet. But these options will be available in the future version of the package. 

 

The estimation mechanism in jmdem is to use optim, a general-purpose optimisation function integrated in R, to find 

the optimum of the likelihood function by trying various values for the target variables in an iterative process. In other words, 

initial values of the regression coefficients must be specified prior to the estimation, and the estimates of the parameters will 

be updated after each iteration of optimisation. By adding "betastart = c(…)" and "lambdastart = c(…)" as 

arguments to jmdem we can specify the initial values of 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑝)
⊤

 and 𝝀 = (𝜆0, 𝜆1, … , 𝜆𝑞)
⊤

. If they are omitted, 

jmdem will use the estimates of �̂� = (�̅�, 0, … ,0)⊤ and �̂� = (�̂�0, 0, … ,0)
⊤

 as their initial values, where is �̅� the sample mean 

of 𝑦1, … , 𝑦𝑛 and �̂�0 = var(𝑦)̂ /𝑉(�̅�). Moreover, we can also add method = c("Nelder-Mead", "BFGS", "CG", 

"L-BFGS-B", "SANN", "Brent") to the jmdem syntax to specify the optimisation method which are integrated in 

the optim function. For detail explanation of these methods we refer to the R documentation [9]. 

 

3. Real Data Application 
The following study was conducted by Long [1] in which the number of articles published by a sample of scholars 

should be analysed and explained. The explanatory variables here are given in the following table: 

 
Table 1: Table of Independent Variables. 

 

Variable names Descriptions 

mar Martial status (1 = married, 0 = not married) 

fem Gender (1 = female, 0 = male) 

phd Prestige of the PhD department 

ment Number of citations received by the person’s mentor 

kid5 Number of children (0 = none, 1 = 1 child, 2 = 2 children, 3 = 3 children or more) 

 

The number of published articles is obviously a Poisson count variable with sample mean 1.69 and sample variance 

3.71. From the theory of GLM, we know that 𝑉(𝜇) = 𝜇 for Poisson distributed random variable. Hence, the estimated 

dispersion here is �̂� = var(𝑌)/𝑉(𝜇) = 3.71/1.69 = 2.19. Though the data are overdispersed here and a standard Poisson 

log-linear model would not be suitable, we will fit one for our reference.  

 

For the application of jmdem, we will fit a Poisson mean effects model and a gamma log-linear dispersion effect model 

jointly. The response variable of the dispersion effect model is computed by the quasi-likelihood function as given in (5a). 

For the optimisation, we choose the “Nelder-Mead” method which is the default setting of the optim function. 

Furthermore, we will add the argument disp.adj = TRUE into the jmdem syntax to correct the higher order cumulants 

of the dispersion parameter as suggested in [3] and [6]. The estimation results of the final model are: 

 
Table 2: Main Effects Estimation Results. 

 

Mean Effects Poisson-Gamma jmdem Poisson GLM 

(Intercept) 0.3007 *** (0.0827) 0.3477 *** (0.0601) 

fem (fem = 1) -0.202 *** (0.0736) -0.2260 *** (0.0547) 

mar (mar = 1) 0.1397 * (0.0845) 0.1481 ** (0.0628) 

kid5 (kid5 = 1) -0.1617 * (0.0955) -0.1803 ** (0.0706) 

kid5.2 (kid5 = 2) -0.2956 ** (0.1237) -0.3278 *** (0.0909) 

kid5.3 (kid5 = 3) -0.6735 * (0.3583) -0.8215 *** (0.2817) 

ment 0.0287 *** (0.0032) 0.0256 *** (0.0020) 

 



 

 

 

 

ICSTA 21-4 

 (Values in parentheses are standard errors, effects marked with * have p-value < 0.1, ** have p-value < 0.05 and *** have 

p-value < 0.01, respectively) 

 
Table 3: Dispersion Effects Estimation Results. 

 

Dispersion Effects Poisson-Gamma jmdem 

(Intercept) 0.2964 *** (0.065) 

ment 0.0145 *** (0.005) 

 

 (Values in parentheses are standard errors, effects marked with * have p-value < 0.1, ** have p-value < 0.05 and *** have 

p-value < 0.01, respectively) 

 

The prestige of the PhD department has been identified as insignificant on the number of published articles by both 

approaches at the 5% significance level. It is therefore removed from the final model. For comparison, we keep all other 

independent variables as their effects have been identified as significant by either one of the models. As given in Table 2, 

the Poisson GLM identifies all effects as highly statistically significant while gender and the number of citations the mentor 

received are the only effects confirmed as such according to jmdem. Furthermore, significant difference in the number of 

published articles between scholars with and without children has been identified by the Poisson GLM, whereas jmdem 

could only confirm the same finding between scholars with two children and none. In general, standard GLM tends to 

underestimate the standard errors of the coefficients since it does not take over- or underdispersion into account. The joint 

mean and dispersion effects model makes the corresponding amendment by modelling the individual dispersion. 

 

The final dispersion effects model, which is a gamma GLM with log-link, does not only indicate that there is an 

aggregated overdispersion in the sample as the intercept is positive and statistically significant, it also shows that the 

probability distribution of published articles are not the same for each individual since the dispersion parameter here depends 

on the individual citation record of the mentor. As a result, this set of data is not only overdispersed, the dispersion also 

varies from observation to observation. 

 

4. Conclusion 

The jmdem package facilitates the modelling of the mean and dispersion effects jointly for data that follow 

the same probability distribution, but with individually varying location and dispersion parameters. The 

assumption of constant dispersion in an independent sample can therefore be omitted, and the standard errors of 

the mean effect coefficients will not be over- or underestimated when varying dispersion occurs. This leads to 

more accurate identification of significant mean and dispersion effects. The jmdem package includes all the 

features of the lm and glm function in R, respectively, and extended it to the specific use for the joint mean and 

dispersion effect models, including the distribution family of the dispersion model, the optimisation method, the 

computation of the individual deviance as the response variable of the dispersion model as well as the adjustment 

of higher order cumulants of the dispersion estimator. The number of optional distribution families will be enlarged 

in the next major update of the package. 
 

References 
[1]  J. S. Long, “The Origins of Sex Differences in Science,” Social Forces, vol. 68, no. 4, pp. 1297-1316, 1990. 

[2] P. McCullagh, “Quasi-Likelihood Functions,” The Annals of Statistics, vol. 11, no. 1, pp. 59-67, 1983. 

[3] P. McCullagh, J. A. Nelder, Generalized Linear Models. Second Edition. Chapman & Hall, 1989. 

[4]  J. A. Nelder, R. W. Wedderburn, “Generalized Linear Models,” Journal of the Royal Statistical Society: Series A, vol. 

135, no. 3, pp. 370-384, 1972. 

 [5]  G.K. Smyth, “Generalized Linear Models with Varying Dispersion,” Journal of the Royal Statistical Society: Series B 

(Statistical Methodology), vol. 51, no. 1, 47–60, 1989.  



 

 

 

 

ICSTA 21-5 

[6]  K. Y. K. Wu, W. K. Li, “On a Dispersion Model with Pearson Residual Responses”, Computation Statistics and Data 

Analysis, vol. 103, pp. 17-27, 2016. 

[7]  Wedderburn, R., “Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method,” 

Biometrika, vol. 61, no. 3, pp. 439–447, 1974. 

[8]  K. Y. K. Wu (2018, April 27). Package ‘jmdem’ [Online]. Available:  

 https://cran.r-project.org/web/packages/jmdem/jmdem.pdf. 

[9]  R Documentation, package stats version 3.5.0 (2019, April 15). General-purpose Optimization. Available: 

https://stat.ethz.ch/R-manual/R-patched/library/stats/html/optim.html. 
 

https://cran.r-project.org/web/packages/jmdem/jmdem.pdf
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/optim.html

