
Proceedings of the International Conference on Statistics: Theory and Applications (ICSTA’19)
Lisbon, Portugal – August 13 - 14, 2019
Paper No. 34
DOI: 10.11159/icsta19.34

On Fitting Complex Models to Noisy Data

Mu Zhu
Department of Statistics & Actuarial Science, University of Waterloo, Waterloo, ON, Canada N2L 3G1

mu.zhu@uwaterloo.ca

Abstract - Deep learning has been remarkably successful at solving certain problems; for other problems, however, its success has been
much more limited. A generic explanation for this phenomenon is as follows: if the model we use to fit the data is not complex enough
for the underlying signal, we will never fully catch it, even without any noise in the data; if the model is more complex than necessary, we
can recover the signal only when there is little to no noise in the data; with a noisy data set, our ability to recover the signal deteriorates
as we use more and more complex models.
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1. Introduction
Recent breakthroughs in machine learning—most notably, deep neural networks (DNNs) [1]—are challenging the

discipline of statistics. A captivating landmark achievement is the defeat of human professional Go champion, Lee Sedol, by
a computer program called AlphaGo, which makes heavy use of the DNN technology [2]. It has prompted many to rejoice,
or lament, that “[d]eep learning is killing every problem in [artificial intelligence]” [3].

In a recent public lecture [4] given at the University of Toronto, Professor Frank Harrell argued that these DNN models
are most fitting for problems with relatively low noise levels; for problems with relatively high noise levels, they haven’t yet
delivered the kind of spectacular success that everyone is expecting. According to Professor Harrell, learning to evaluate
different moves in the game of Go is a “low noise” problem. The game is highly complex due to the exploding number of
possible configurations but, given any particular configuration, the value of each legal move is more or less deterministic;
there is little uncertainty about it.

The difference between {variation, complexity} and {uncertainty, noise} can be confusing indeed. They are, of course,
not the same thing. For example, learning to recognize images of cats is another “low noise” problem of the kind that Professor
Harrell had in mind. There is a lot of variation in this problem, because there are many different types of cats and even the
same cat can look very different from different angles. In order to recognize such a great variety of cats, we need a relatively
complex model. But there is a fundamental difference between

(a) having many clear images of different cats, and
(b) having many blurred images of the same cat.

In scenario (a), the signal itself is complex, containing a lot of variation, but upon reception it is mostly loud and clear. In
scenario (b), the signal itself is simpler, but it is always badly corrupted when we receive it. Professor Harrell’s point is
essentially that complex models such as DNNs are really only suitable for scenario (a). In this short paper, I describe some
simple analysis to support Professor Harrell’s point. The results themselves are not really new; it’s the way they are presented
that may be helpful.

2. Experiment and Observations
In each panel of Fig. 1, a model with a certain level of complexity (as measured by the parameter, df) is fitted to data

generated from the same underlying signal plus different levels of noise (as measured by the parameter, σ ). From Fig. 1, we
can make a few general observations:

(O1) If the model we use to fit the data is not complex enough for the underlying signal (two left columns), we will never
fully capture it, even if there isn’t any noise in the data at all (top row).

(O2) If the model is more complex than necessary (right column), we can still recover the signal when there is no noise in
the data (top row).
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σ=0; df=5 σ=0; df=10 σ=0; df=25 σ=0; df=200

σ=0.1; df=5 σ=0.1; df=10 σ=0.1; df=25 σ=0.1; df=200

σ=1; df=5 σ=1; df=10 σ=1; df=25 σ=1; df=200

Fig. 1: Models with different levels of complexity (as measured by the parameter, df) are fitted to data generated from the same underlying
signal plus different levels of noise (as measured by the parameter, σ ). For n = 500 equally spaced points, x1,x2, ...,xn ∈ [0,2π], responses
are generated according to yi = f (xi)+εi, with εi being i.i.d. from N(0,σ2), and f (x) = (0.5)sin(5x). A penalized regression spline—see,
e.g., [5, 6]—with a fixed set of 250 knots and a specific degree of freedom (df) is then fitted to the resulting data set, {(xi,yi)}n

i=1.

(O3) But, as the data become noisier (moving down the rows while staying in the right column), we start to overfit.

(O4) Moreover, if the noise level is low (middle row), we do not suffer too badly; but if the noise level is high (bottom row),
we can easily have a disaster.

Even though the observations (O1)-(O4) are hereby based upon a particular experiment, they are in fact not specific to
such a toy example alone, and we can try to express them more formally.

3. Conjectures
For any function f : Rp 7→R, let C( f ) be a measure of its complexity. For i = 1,2, ...,n, suppose yi = f (xi)+εi, where

E(εi) = 0, Var(εi) = σ2, Cov(εi,ε j) = 0 for i 6= j, and the function f is unknown. Let

f̂n,q = argmin
C(g)≤q

n

∑
i=1

[yi−g(xi)]
2
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Table 1: How each observation (O1), (O2), (O3) and (O4) is supported by various elements of Theorem 1.

Observation Theorem

q <C( f ) (O1) (C1) L > 0 even if σ2 = 0

(O2) (C2)(i) hn(q,0)≡ 0

q≥C( f ) (O3) (C2)(ii) hn(q,σ2)> 0 for σ2 > 0

(O4) (C2)(iii) hn(q,σ2) = qσ2/n

be an estimate of f based on fitting a function with complexity no more than q to the data {(xi,yi)}n
i=1. Based on (O1)-(O4),

it is tempting to make the following conjectures about

IMSE( f̂n,q)≡
∫

E(| f (x)− f̂n,q(x)|2)dx,

the integrated mean-squared error of f̂n,q:

(C1) If q <C( f ), then there exists an irreducible lower bound L > 0 such that IMSE( f̂n,q)≥ L even if σ2 = 0 and/or n→∞.

(C2) If q≥C( f ), then there exists a function hn(q,σ2) such that IMSE( f̂n,q)� hn(q,σ2), where

(i) hn(q,0)≡ 0,
(ii) hn(q,σ2)> 0 for σ2 > 0, and
(iii) hn(q,σ2) is non-decreasing in both q and σ2.

The technical nuance here lies in the exact definition of the complexity measure C(·) and the precise form of the
function hn(·, ·).

4. Extra Assumptions and Theorem
While a general proof of (C1)-(C2) for any definition of C( f ) may be difficult to obtain, it is not too difficult to prove

a specific version of them by introducing two additional assumptions:

(A1) There exists an orthonormal basis B = {ϕ1(x),ϕ2(x), ...} such that

f (x) =
q∗

∑
j=1

β jϕ j(x).

(A2) The set of basis functions, B, is known (but not the number q∗).

Under (A1), we can define C( f ) = q∗ to be the number of basis functions in B required to express f . For any fixed
choice of q, (A2) allows us to obtain f̂n,q simply by regressing yi onto ϕ1(xi), ...,ϕq(xi). These simplifications make it possible
to turn (C1)-(C2) into a theorem.

Theorem 1. Under (A1) and (A2), (C1) and (C2) hold with hn(q,σ2) = qσ2/n.

A proof of Theorem 1 is given in the Appendix. It is trivial to verify that hn(q,σ2) = qσ2/n satisfies the three require-
ments (i)-(iii) laid out in (C2). Table 1 explains how various elements of Theorem 1 can be seen to provide theoretical support
for each of the observations (O1)-(O4) we have made earlier.
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5. Discussion
Do the two extra assumptions (A1)-(A2) render the result practically irrelevant? I will argue that they do not. Assump-

tion (A1) is not terribly unrealistic; it is relatively common in the theoretical literature. Assumption (A2) is clearly the main
culprit. However, one can argue that, in reality, the estimation error cannot be smaller than if we already know the dictionary,
B. In other words, one could almost rely on (A1) alone and “elevate” (C1)-(C2) into a theorem by simply revising (C2) to
say

IMSE( f̂n,q)≥
qσ2

n
for q≥C( f ), instead of

IMSE( f̂n,q)� hn(q,σ2)

for some unspecific function hn(·, ·) satisfying (i)-(iii).
Such a revision hardly affects our main qualitative conclusion. Instead of quantifying the estimation error itself, the

revised statement merely quantifies a lower bound on the error, but it still lends the same theoretical support for observations
(O2)-(O4). Moreover, the practical implications remain unchanged as well. That is, when there is little noise in the data, it
pays to use a complex model [observation (O1) and (O2)]—this explains why deep learning has been so successful at solving
certain problems; however, when data are very noisy, there are definitely good reasons why we should be cautious about, or
even eschew, fitting very complex models [observation (O4)].

The expression, hn(q,σ2) = qσ2/n, also shows that there is entanglement between complexity (q) and noise (σ2). If
we are willing to tolerate a slight abuse of statistical jargon, we can also say that there is an interaction effect between these
two factors on estimation error.

6. Conclusion
I have provided some simple analysis to support Professor Harrell’s point of view that the deep learning (DL) commu-

nity seem to be betting on high complexity and low noise. Specifically, if the signal itself is complex in the sense that C( f )
is large, then using a simple, or shallow, model is not enough; if the noise level σ2 is relatively low, then using a complex, or
deep, model won’t hurt too badly. For the kind of problems that the DL community tend to focus on, they definitely appear to
be betting in the right direction. However, the success of their bets does not automatically imply that all estimation problems
are cast in such “low noise” environment. For many other problems, we may very well be required to bet in the other direction.
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Appendix
We prove (C1)-(C2) under the additional assumptions, (A1)-(A2). Throughout the proof, we will simply write f̂ instead

of f̂n,q. Given q, let y = (y1,y2, · · · ,yn)
>, ε = (ε1,ε2, · · · ,εn)

>,

Φ =


ϕ1(x1) ϕ2(x1) · · · ϕq(x1)
ϕ1(x2) ϕ2(x2) · · · ϕq(x2)

...
...

. . .
...

ϕ1(xn) ϕ2(xn) · · · ϕq(xn)

 , and ϕ(x) =


ϕ1(x)
ϕ2(x)

...
ϕq(x)

 .
Under (A2), we simply regress y onto Φ, obtain

β̂ = (Φ>Φ)−1
Φ
>y,

and estimate f by

f̂ (x) =
q

∑
j=1

β̂ jϕ j(x) = [ϕ(x)]>β̂ .

The proof primarily consists of calculating the IMSE of f̂ using the well-known bias-variance decomposition:∫
E(| f (x)− f̂ (x)|2)dx =

∫
Bias2[ f̂ (x)]dx+

∫
Var[ f̂ (x)]dx. (1)

Step 0
That {ϕ1,ϕ2, ...} is an orthonormal basis means

1
n

n

∑
i=1

ϕ
2
j (xi)�

∫
ϕ

2
j (x)dx = 1 ∀ j (2)

and

1
n

n

∑
i=1

ϕ j(xi)ϕk(xi)�
∫

ϕ j(x)ϕk(x)dx = 0 ∀ j 6= k, (3)

for relatively large n. Hence, we have the approximation

Φ
>

Φ � nI. (4)

Step 1
First, we compute the variance part of (1). For fixed x,

Var[ f̂ (x)] = [ϕ(x)]>Var(β̂ )[ϕ(x)]

= [ϕ(x)]>
[
σ

2(Φ>Φ)−1
]
[ϕ(x)]

� σ2

n

q

∑
j=1

ϕ
2
j (x),

using the approximation (4). Hence, ∫
Var[ f̂ (x)]dx� σ2

n

q

∑
j=1

∫
ϕ

2
j (x)dx =

qσ2

n
. (5)
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Step 2
Next, we compute the bias part of (1). First, suppose q < q∗ ≡C( f ). Define a few “obvious” quantities—{Φm,ϕm},

where the subscript “m” stands for “missing”; {Φ∗,ϕ∗}; and {β ,β m,β ∗}—in such a way that

Φ∗ = [ Φ Φm ] , ϕ∗(x) =
[

ϕ(x)
ϕm(x)

]
, and β ∗ =

[
β

β m

]
.

Then,

y = Φ∗β ∗+ ε = [ Φ Φm ]

[
β

β m

]
+ ε

and, for fixed x, we can obtain

Bias[ f̂ (x)] = E[ f̂ (x)]− f (x)

= [ϕ(x)]>E(β̂ )− [ϕ∗(x)]
>

β ∗

= [ϕ(x)]>(Φ>Φ)−1
Φ
>E(y)− [ϕ∗(x)]

>
β ∗

= [ϕ(x)]>(Φ>Φ)−1
Φ
>(Φβ +Φmβ m)−

{
[ϕ(x)]>β +[ϕm(x)]

>
β m

}
= [ϕ(x)]>(Φ>Φ)−1

Φ
>

Φmβ m− [ϕm(x)]
>

β m.

However, by (2)-(3), we have Φ
>

Φm � 0, so

Bias[ f̂ (x)]�−[ϕm(x)]
>

β m.

But the fact that C( f ) = q∗ > q means not all elements of β m can be zero. Thus, we have found a quantity,

L =
∫

Bias2[ f̂ (x)]dx�
∫ {

[ϕm(x)]
>

β m

}2
dx > 0, (6)

which is strictly larger than zero. Combining (5) and (6), we see that, when q <C( f ),

IMSE( f̂ )� L+
qσ2

n
> 0,

even if σ2 = 0 and/or n→ ∞.

Step 3
Now, suppose q≥ q∗ ≡C( f ). To proceed, re-define the quantities {Φm,ϕm}, {Φ∗,ϕ∗} and {β ,β m,β ∗} so that

Φ = [ Φ∗ Φm ] , ϕ(x) =
[

ϕ∗(x)
ϕm(x)

]
, and β =

[
β ∗
0

]
.

Then,

y = Φ∗β ∗+ ε = [ Φ∗ Φm ]

[
β ∗
0

]
+ ε = Φβ + ε

and, for fixed x, we can obtain

Bias[ f̂ (x)] = E[ f̂ (x)]− f (x)

= [ϕ(x)]>E(β̂ )− [ϕ∗(x)]
>

β ∗

= [ϕ(x)]>(Φ>Φ)−1
Φ
>E(y)− [ϕ∗(x)]

>
β ∗

= [ϕ(x)]>(Φ>Φ)−1
Φ
>

Φβ − [ϕ∗(x)]
>

β ∗

= [ϕ(x)]>β − [ϕ∗(x)]
>

β ∗

=
{
[ϕ∗(x)]

>
β ∗+[ϕm(x)]

>0
}
− [ϕ∗(x)]

>
β ∗

= 0,
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which means ∫
Bias2[ f̂ (x)]dx = 0 (7)

as well. Combining (5) and (7), we see that, when q≥C( f ),

IMSE( f̂ )� qσ2

n
,

which is (i) equal to zero when σ2 = 0, (ii) strictly positive if σ2 > 0, and (iii) non-decreasing in both (q,σ2).
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