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Abstract – Predicting outdoor sound propagation in uncertain conditions remains a challenge. This increases the complexity of the 

inverse problem, e.g. parameter recovery in the presence of a particular sound source such as like gunfire. This paper investigates the use 

of maximum likelihood methods, both frequentist and Bayesian, in inverting true parameters from measured and simulated data. A simple 

source-receiver acoustic model is used which assumes; a homogeneous atmosphere, soft impedance ground and some medium range 

sound propagation to predict the deviation in sound pressure at the receiver. A blank firing pistol, Bruni Mod 92, is used to record a 

realistic sound source spectrum in an anechoic chamber. Gaussian noise is added to model predictions for this type of source to mimic 

uncertainty of real-life observations. Error analysis is performed by repeatedly generating observations and then evaluating the errors 

between the true range and recovered range estimate. This analysis is performed in broadband and octave frequency bands. It was found 

that the frequentist method greatly underestimates the range while the Bayesian method, even with a particularly flat prior, greatly reduces 

both over- and underestimations, significantly improving the range estimate to within ±5𝑚 of the true value in the majority of cases. The 

inclusion of octave band filters in the infrasonic frequency showed these bands were mostly responsible for the accurate range estimates. 

This paper paves the way for applications of this class of statistical models to real-life acoustic data for source parameter recovery. 
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1. Introduction 
Unlike other acoustical disciplines, outdoor sound propagation is not well understood in the presence of uncertainty. 

This complicates the application of the inverse process in which experimental data are used to infer sound source and 

environmental parameters. Improving the statistical understanding of this problem at the fundamental level will help the 

development of more robust inversion models and their practical applications. 

This paper makes use of the likelihood function, frequentist and Bayesian methodologies to infer an unknown gunshot 

source range. This is done in the scenario where a simple homogenous atmosphere and soft impedance ground are present, 

and the remaining key parameters are known. Simulations are done by generating a small set of observations from an 

established acoustic model with gaussian noise added to simulate uncertainty in experimental data. Parameter estimates are 

then obtained from the frequentist Maximum Log-likelihood [1] and Bayesian Maximum a Posteriori methods [2]. The error 

of the inferred parameters against the true value is studied. This process repeated for over sets of generated observations. 

The performance of statistical methods is compared for broadband data and data filtered in octave band frequency windows. 

It is believed that the results obtained from this work will improve current inversion techniques and industrial practices which 

rely on outdoor sound propagation with uncertainties. 

 

2. Acoustical Methods 
2.1. Acoustic Foundations 

A typical sound source produces a collection of sound waves, composed of different frequencies that propagate through 

some medium i.e. air in the outdoor case. A homogenous, atmosphere removes possible interferences from wind, turbulence 

and/or temperature gradients. Following this assumption, the sound pressure generated by this source can then be measured 

at the receiver position as a combination of the direct wave and wave reflected from the ground. These two waves interfere 
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in constructive/destructive way resulting a complicated spectrum of the sound observed at the receiver position. The key 

parameters that need quantifying to make accurate predictions for this source/receiver/ground configuration are: sound 

frequency (𝜔), source height (𝑠ℎ), range (𝑟), receiver height (𝑟ℎ) and impedance of the ground (𝜎𝑔). Figure 1 explains this 

problem schematically. 

 

 
Fig. 1: Acoustic scenario in the (𝑟, 𝑧) geometry. 

 

The excess attenuation spectrum is a common characteristic of the sound field predicted by this acoustical model. The 

excess attenuation, Δ𝐿, represents the deviation from the free pressure field now due to the influence of the ground, frequency 

and geometry, taking positive and negative values due to the constructive or destructive interference between the direct and 

reflected rays, respectively [3]. Δ𝐿 is equated as 

Δ𝐿 = 10log10 |1 + 𝑄
𝑅1

𝑅2
exp(𝑖𝑘𝑅2 − 𝑖𝑘𝑅1)|

2

, (1) 

where  

𝑅1 = √𝑟2 + (𝑧 − 𝑧𝑠)2 , (2) 

𝑅2 = √𝑟2 + (𝑧 + 𝑧𝑠)2 . (3) 

Parameters 𝑘 and 𝑖 are the wavenumber and imaginary number, respectively. The parameter 𝑄 in eq. (1) is the spherical 

wave reflection co-efficient, describing the relative pressure in the spherical wave reflected by the ground. This is a 

combination of the incident angle, 𝜃, and normalised impedance of the ground, 𝑍. 𝑄 is calculated as 

𝑄 = (
𝑍 cos𝜃 − 1

𝑍 cos𝜃 + 1
) + (1 − (

𝑍 cos𝜃 − 1

𝑍 cos𝜃 + 1
)) 𝐹(𝑤) , (4) 

with the boundary loss factor, 𝐹(𝑤), as 

𝐹(𝑤) = 1 + 𝑖𝑤√𝜋 exp(−𝑤) erfc(−𝑖𝑤) , (5) 

and error function, erfc(𝑧),  

erfc(𝑧) =
1

√2𝜋
∫ exp(−𝑡2) 𝑑𝑡 .

∞

𝑧

(6) 

 

Calculating the acoustic impedance of the ground, 𝑍, can be done be various methods, however assuming the ground to 

be porous, the method proposed by Horoshenkov et al is used [4] in this paper. This model makes use of the median pore 

size which relates to the ground impedance. It considers the ground as a porous media with circular pores of non-uniform 

cross-section. It can be noted however; recent findings suggested the impedance of the ground was not a strongly significant 

factor inside simple acoustic scenarios while uncertainty was present in the geometry [5].  
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2.2. Gunshot Evaluation 

Acoustical characterisation work on gunfire show that the sound generated can be categorised into three parts; muzzle 

blast, mechanical action and supersonic projectile [6]. The paper uses data collected from a Bruni mod 92 blank pistol, 

meaning that no supersonic projectile is produced leaving only the muzzle blast and mechanical action of the pistol. Sound 

recordings were taken of the pistol shots in an anechoic chamber at the University of Sheffield. The source and receiver were 

placed on the hard ground and separated by 3 m. The Fast Fourier Transform algorithm was applied to the time data (left-

hand side of Fig. 2) to determine the frequency spectrum of each firing event (right-hand side of Fig. 2). 

 

 
Fig. 2: Selection of gunshot recordings (left) with FFT of each (right). 

 
Problematic mechanical action i.e. the casing being ejected, ricocheting etc is assumed to be the causes of the variation 

in the higher frequencies in the frequency plot (Fig. 2). It is also logical to assume that at long ranges, the smaller intensity 

of such sounds would likely dissipate before reaching the receiver. The measured frequency spectra were then averaged, 

using a cut-off point to remove small amplitudes, to leave a singular array of values which created a broadband frequency 

spectrum between a minimum of 0.24Hz and maximum of 93.02Hz. These frequencies correspond to the lower and upper 

octave bands used in this paper as it is common in acoustical practices to study outdoor sound propagation in individual 

octave bands. Octave filtered bands used in our analyses (Table 1) follow the current international standard set [7]. Bands 

with an asterisk (*) are described but are not used in analysis since the spectrum recovered did not contain frequencies inside 

that respective window.  
 

Table 1: Octave band limits, in accordance to ISO 266. 

 

Octave 1/1 Band Lower Limit (Hz) Centre Frequency (Hz) Upper Limit (Hz) 

Band 0 0.24 1 1.41 

Band 3 1.41 2 2.82 

Band 6 2.82 4 5.62 

Band 9* 5.62 8 11.2 

Band 12 11.2 16 22.4 

Band 15 22.4 31 44.7 

Band 18 44.7 63 89.1 

Band 21 89.1 125 177 
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2.3. Parameter Selection and Observations 

 The known source and receiver heights were set to 2𝑚, as higher geometries begin to be highly subject to atmospheric 

effects, thus keeping our current model fit for use. The ground was considered as acoustically soft, which is typical for a 

field with low growing vegetation with an experimentally measured flow resistivity of at 500𝑃𝑎𝑠𝑚−2 corresponding to the 

median pore size of 530𝜇𝑚 [8]. Range, being the unknown parameter, will have three true values being; 100𝑚, 200𝑚 and 

300𝑚. The excess attenuation spectrum, Δ𝐿 for the each set of true values are shown in Fig. 3. 

Before collecting observations, it is helpful to rewrite the acoustical model (eq. (1)) as a function of the parameters 

𝑌 = 𝑓(𝜔, ℎ𝑠, 𝑟, ℎ𝑟 , 𝜎𝑔) . (7) 

It is assumed that the acoustic model is perfect which means that it will predict the exact sound spectra for the input 

parameters given. To generate observations, the function (eq. (7)) has some gaussian noise added to predicted values, via an 

error term of 𝜀𝑠 ∼ 𝑁(0, 𝜎𝜀
2) with the variance 𝜎𝜀

2 fixed at 3dB. Thus, dropping constant terms from the notation, observations 

can be generated by the rewritten function  

𝑦𝑠 = 𝑓(𝜔, 𝑟) + 𝜀𝑠 . (8) 

In relation to the true excess attenuation spectrum, the possible values of the observed excess attenuation are shown to 

exist between the dashed limits depicted in Fig. 3. 

 

 
Fig. 3: Excess attenuation spectrum (solid) for true values, for range at 100m (left), 200m (middle) and 300m (right). Limits to 

observed values due to noise (dashed) are superimposed. 

 
3. Statistical Methods 
3.2. Maximum Log-likelihood Estimation (MLE) 

The first method will be of the frequentist approach, maximising the likelihood function to estimate a given 

parameter. It is assumed that the observations generated can be described by some normal distribution, of some give 

mean and variance 𝑋𝑠~𝑁(𝜇, 𝜎2), then it has the likelihood function ℒ(𝜃|𝑋) = ∏ 𝑓𝑁(𝑥𝑠; 𝜇, 𝜎2)𝑛
𝑠 , which can be log 

transformed to the log-likelihood as 

log(ℒ(𝜃|𝑋)) = ℓ(𝜃|𝑋) = −
𝑛

2
log 2𝜋 −

𝑛

2
log 𝜎2 −

1

2𝜎2
∑(𝑥𝑠 − 𝜇)2

𝑛

𝑠=1

 . (9) 

The above is the log-likelihood [1]. The function in eq. (9) can then, using eq. (7) and eq. (8), be rewritten as 

ℓ(𝜃|𝑌, 𝜔, 𝑟) = −
𝑛

2
log 2𝜋 −

𝑛

2
log 𝜎2 −

1

2𝜎2
∑ ∑ ∑ (𝑦𝑠 − 𝑓(𝜔𝑗, 𝑟𝑘))

2
𝑛

𝑠=1

𝑚

𝑘=1

𝑞

𝑗=1

 . (10) 

This log-likelihood, eq. (10), uses an 𝑛 number of generated observations (𝑦𝑠), to find the best estimate of the range 

from the source (𝑟𝑘), from a parameter space of 𝑚 points, by locating the point in which the function is maximised. This is 
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done for each frequency (𝜔𝑗) from an array of 𝑞 frequency points. Apart from finding the maximised value for 𝑟 for all the 

complete frequency spectrum, maximised results inside frequency bandwidths like the defined octave bands (Table. 1), and 

thus a related estimate for 𝑟, can be located to be explored. 

 
3.3. Bayesian Maximum a Posteriori (MAP) 

The second method adheres to the Bayesian perspective. Bayes' theorem allows for the likelihood function to be 

combined with prior beliefs, giving such knowledge statistical weighting in the predictive process. The renown theorem can 

be written as 

𝑃(𝜃|𝑋) =
𝑃(𝑋|𝜃) × 𝑃(𝜃)

𝑃(𝑋)
=

ℒ(𝜃|𝑋) × 𝑃(𝜃)

𝑃(𝑋)
 , (11) 

where 𝑃(𝜃|𝑋) is posterior, 𝑃(𝑋) is the evidence, 𝑃(𝜃) is the prior and  ℒ(𝜃|𝑋) the likelihood described earlier. The 

posterior probability is computed as a probability distribution of 𝜃 given the observed data 𝑋. Since the peak of the posterior 

distribution is the only value of interest to us, as this is the most likely estimate of the parameter/s, the normalising constant 

of 𝑃(𝑋) can be dropped greatly reducing computational effort. This results in eq. (3) being modified to 

𝑃(𝜃|𝑋) ∝ ℒ(𝜃|𝑋) × 𝑃(𝜃) . (12) 

Eq. (12) allows for the MAP (Maximum a posterior) estimate, or the most likely value given the combination of prior 

beliefs and observed data, to be found. Like the earlier likelihood function, eq. (12) can be log transformed to 

log(𝑃(𝜃|𝑋)) ∝ ℓ(𝜃|𝑋) + log 𝑃(𝜃) . (13) 

Priors can be used to import knowledge, or lack of, around the true value. Furthermore, the log of probability is a 

negative number, thus the value of log 𝑃(𝜃) can be interpreted as a penalty term. When the estimated parameters fall outside 

the interval prior, the penalty becomes log (0), thus reducing the likelihood to −∞. [2]. The prior probabilities applied in this 

work are assumed to be proportional to some normal distribution, 𝑃(𝜃) ∼ 𝑁(𝜇∗, 𝜎∗), where the value of 𝜇∗is taken to be 

equal to the true parameter in each scenario. The standard deviation in the source range is fixed at 𝜎∗ = 15𝑚, as this gives 

a possible error of up to ~ ± 50𝑚. This is analogous to the observer having an idea where the gunshot was fired yet giving 

themselves a large window of error, that is also similar to the parameter space of 𝑟 that is numerically calculated from. 

 
3.4. Computational Error Analysis 

Investigating how efficient an estimate of the range is achieved computationally (using MATLABTM) by comparing 

every simulated estimate to the true value of 𝑟 in question. This is done by creating 3 observations, using eq. (8), maximising 

likelihood function for the observations over the (𝑚, 𝑞) space detailed in eq. (10) with, and without, a prior belief applied 

and comparing the related estimate of 𝑟 to the true range for all the three different true ranges. The process is repeated 1000 

times, for each true value of 𝑟, so an adequate amount of errors can be investigated. Errors are compared across combinations 

of each true value for range, statistical method applied and frequency windows. 

 

4. Results 
4.1. Broadband Analysis 

Comapring the errors from using MLE to the MAP methods (Fig. 4) reveals clear differences in how well the true range 

of the source was recovered from the simulated observations. The MLE method is not very effective at any range, actually 

estimating each posible value of 𝑟 in the parameter space used at least once. There is also a large tendency to underestimate 

by the minimum possible value. The shortest range (100𝑚) was least sucecptble to this but the remaining ranges 
(200𝑚, 300𝑚) had over a 50% chance of being out by −50𝑚, which is a 50% error in the 100𝑚 case. In only a small 

perecetnage of simulations was the true vlaue recovered, but this was as likely as recoving any parameter from the parameter 

space for 𝑟. There was also a recurrent overestimation (+~15𝑚) in the case were 𝑟 = 100𝑚, being the most estimated 

value,  yet this slight overestimation dissappeared once the range was increased.  

Bayesian MAP method showed that the application of a prior, even the flat one used, greatly reduced the margins of 

error with 60% + of the simulations aprroximating the true value of 𝑟 (±2𝑚). Some underestimations of ~ − 50𝑚 remained 

present in the shortest range (100𝑚), but the occurrence of this was greatly reduced than to their MLE counterparts. For the 

ranges greater than 100𝑚, the variance in the error decreases greatly. Some errors of up to+~20𝑚 for 𝑟 = 200𝑚 and 
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+~10𝑚 for 𝑟 = 300𝑚, yet these results were extremely uncommon. The majority of the results fell within ±5𝑚, a far more 

reliable window of error than that of the MLE. 

 

 
Fig. 4: Errors between estimate and true range across simulations using MLE (top row) and Bayesian MAP (bottom row) methods. 

 
4.2. Octave Filtering 

Filtering the excess attenuation data into octave bands and applying the MLE method to data presented in individual 

octave bands resulted in almost identical errors as in the case of broadband data. However, the application of the MAP 

method to octave band data proved more successful. Frequncy bands deep into the infrasonic range (< 6Hz) were most 

succesful in estimating the true value, with the full variance in errors greatly decreasing as the centre freqeuncy decreased. 

Application of the MAP method to Band 6 revealed that rarely overstimations were made, and when the exact value wasn’t 

recovered the error was spread between 0𝑚 and −50𝑚. Decreasing to Octave band 3 reduced the underestimation, to 

approximately −20𝑚, with a small likelihood of overstimating by up to ~20𝑚. Band 0 was the most effecient, with little to 

no understimation, but could overstimate by up to 10𝑚, while it had recovered the true value (±2𝑚) in over 50% of 

simulations. There was consistent effects of the range, apart from the increase in range to 300𝑚 inside Octave band 6 pushed 

up the maximal understimations to be the most persistent. 
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Fig. 5: Error between estimate and true range across simulations for the Bayesian MAP method for each true range (rows) and the 

lowest three Octaves (columns). 

 
5. Conclusion 

Estimating the sound source range solely form the maximising likelihood function does not recover its true value 

effectively being susceptible to large underestimations. The Bayesian use of a prior was significantly more effective. In the 

case of a flatter prior, it greatly improved the ability of the model to recover the true parameter value within ±2m. Most other 

simulations resulted in an error of ±10𝑚, particularly at longer ranges. At the shorter range of 100𝑚 the method 

underestimated the true range value, but the occurrence of this reduced by half. This supports the case of using Bayesian 

techniques with data that has: a small sample size, not easily replicable or when time constraints may be present around the 

inference result.  

Octave filtering using only the maximisation of the likelihood revealed no significant differences in the error analysis 

than to the broadband spectrum. However, the application of the Bayesian MAP method to octave band data was shown 

more successful when some particular frequency bands were adopted. In particular, the infrasonic (< 20Hz) frequency bands 

were found to produce less error. Octave bands higher than Band 6 consistently underestimated the range by ~ − 50𝑚, akin 

to that observed with the MLE method. Thus, it is recommended to use a combination of the lower frequency bands and 

MAP method with priors that allow for more accurate estimations. This supports the idea of relying on infrasonic 

measurements for a gunfire source when the impedance ground is soft to make accurate predictions while also and may prove 

useful when trying to invert parameters from higher dimensional problems i.e. inhomogeneous atmosphere. 
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