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Abstract – Classical and Bayesian statistics have own proper criteria and techniques. The scientific community debates the pros and 

cons of the two statistical schools since long, but this broad research driven by theoretical and practical criteria, has not provided 

definitive answers since a fundamental disagreement lies at the very heart of the problems. Conflicting probability theories underpin the 

two statistics and the numbers convey irreconcilable meanings in the two sectors.   

Eminent authors have developed philosophical arguments to support their probability interpretations, by contrast we have conducted an 

inquiry which follows a purely mathematical approach. Two theorems prove that the frequentist and subjective models are not 

incompatible and lead to a precise rule for working statisticians who are called to select the most suitable methods in a project.  

 

Keywords: Classical statistics; Bayesian statistics; frequency probability; subjective probability; philosophy and 

mathematics. 

 

 

1. Introduction 
Present day experts have the classical and Bayesian statistics at disposal. Both of the methods share the idea that the 

more information one gets, the more accurate are the calculated forecasts. Sometimes the two schools adopt symmetrical 

techniques but besides occasional convergence the two statistics show evident disparities. Usually professionals apply the 

first or the second methodology in a project on the basis of pragmatic criteria, and an investor who pays for a statistical 

study and requests for the best outcome, does not obtain univocal answers. 

Classical statistics uses sampled data and thus data observed under similar circumstances may be different. The 

parameters are not random variables while randomness is associated with the variations in replicated observations. The 

input data are the premises, and the results of the statistical procedures yield the conclusion so classical statistics complies 

with the deductive or inferential logic. 

For Bayesians a statistical parameter is a random variable and subject to probabilistic description. Analysis begins 

with the quantification of subjective priors deriving from the investigator's existing state of knowledge, beliefs, and 

assumptions which are taken just as they are. The analysis proceeds based on the Bayes’ formula which computes the 

posterior using the prior and likelihood that are known for all hypotheses. The logical course starting with a prior 

distribution, getting data, and moving to the posterior distribution is associated with learning about the general from the 

particulars, hence scholars usually classify the Bayesian inference as inductive.  

Using a rather paradoxical language one might conclude that the two statistics adopt opposed criteria and methods of 

work. This apparent disparity should entail a rigorous criterion to select the best statistics to employ in a project, but this 

criterion is still missing. Researchers have analyzed the strong and weak points of each statistics from various perspectives 

[1]-[4], but they have not got a shared criterion. The reason is apparent. Even when the classical and Bayesian procedures 

provide identical numerical results, those procedures assign irreconcilable meanings to the numbers. 

The essential difference between the two schools is in how probability (P) is conceived and used [5]. Frequentists see 

P as the long-run expected frequency of occurrence. The Bayesian relate probability to a degree of personal belief. In these 

terms the two views prove to be absolutely irreconcilable. 

I have conducted an inquiry in order to look into this long-standing controversy. I have made the textual analysis of 

the most significant works written by eight masters of probability theory [6]. The textual analysis has made evident how 

frequentists and subjectivists have written verbose and redundant works. They share the style typical of philosophers and 
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humanists. They argue over a variety of non-mathematical topics, they discuss about linguistics, sociology, the scientific 

method etc. They devote quite a number of pages to demolish the rival proposals. In summary, the textual analysis brings 

evidence of how each author is aware of the multiple nature of probability but he is convinced that only one model of P is 

true. He creates a theory in consequence of his personal ideas and philosophical position and holds with all his strength that 

solely his construction establishes the authentic essence of P.   

Facing this situation, I have developed a purely mathematical approach to the probability interpretation issue which is 

based on theorems and not on personal opinions.  

 

2. The Mathematical Way 
Let us recall a few basic assumptions. Probability is the measure of how likely the random result e will occur. Given a 

sample space Ω and an associated sigma algebra Σ, the probability P is a function with domain Σ that satisfies: 

 

1. P(e) ≥ 0 for all e  Σ. 

2. P(Ω) = 1. 

3. If e(1), e(2), e(3),  . . .  Σ are pairwise disjoint, then  ( ) ( )11
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The probability established in abstract and used in applications, needs to be checked. It is necessary to discuss how 

and when the quantity P(e) can be tested. Falsifiability, according to the philosopher Karl Popper, endorses the inherent 

testability of any scientific hypothesis and in turn the genuine science. A scientific area may be checked in a more or less 

easy manner and the ensuing theorems – proved and discussed in [7] – determine the relation between the relative 

frequency and probability which emerges in the collective (e∞) and the single trial (e1). 

 

2.1 Theorems #1 and #2 
Suppose e is an i.i.d variable, the theorem of large numbers (TLN) states that as the number of trials grows, the 

relative frequency almost surely gets closer to the probability P(e∞) 
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The theorem of a single number or lower bound theorem (TSN) demonstrates that the relative frequency unfits with 

probability in a single trial  

 

F(e1) ≠ P(e1),                   n = 1.                                                     (3) 

   
2.2 Remarks about TLN 

The theorem of large numbers has a conceptual link with the law of large numbers (LLN), but a neat difference 

divides them. 

LLN expresses the convergence of empirical random data toward an expected value. Émile Borel developed a special 

strong version of LLN where q is the number of empirical occurrences and P is a purely numerical value  
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                                                 (4) 

 
It is necessary to put beforehand that an experiment dealing with the parameter x cannot verify x in all its extension. 

For example, one checks x in a finite range and cannot control x from –∞ to +∞. Therefore, the hypothesis n→∞ implies 

that TLN deals with a peculiar testable event and a particular kind of probability whereas LLN deals with probability in 

general. The statement (2) describes the property of P(e∞) and not of P because TLN is an applied theorem and not a 

general law. Therefore, TLN proves that – at least in principle – the probability of repeated events (called collective by von 
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Mises and series by Venn) can be tested, P(e∞) is a parameter that exists in the real world, the frequency probability P(e∞) 

is an authentic physical quantity. 

 

2.3 Remarks about TSN 
TSN shows how one cannot test the probability of a single random event. It is not a question of instruments or 

experimental setting; the theorem proves that never ever one can corroborate P(e1) and therefore it is not a physical 

quantity. This conclusion perfectly matches with the famous aphorism by de Finetti: “Probability does not exist”.  

TSN implies that scientists should reject P(e1) because it is out of control; instead statisticians and even common 

people are concerned with the probability of a single result. Subjectivists and Bayesians exploit the semantic value of P(e1) 

and circumvent this obstacle caused by (3) [7]. What does ‘semantic value’ exactly mean? 

Semiotics is the science of signs and teaches us that numbers, words, signs etc. are items of information [8-9] and as 

such they can convey meanings. The number P(e1) does not have any physical significance nonetheless it does not lose the 

capability of conveying significance. Subjectivists and Bayesians use it to express a personal credence about the 

occurrence of (e1), namely P(e1) is a subjective probability.  

 

Some writers have raised criticism against this model [10] which I recall in concise terms:  

1. Subjective probability means to quantify the personal belief which in principle can be affected by the variety of 

personal convictions held by an individual. The suspicions of arbitrariness have been raised since the early 

beginnings.  

2. The betting scheme appears strange in scientific and engineering sectors.   

3. Testing is a key criterion for the scientific method but in principle subjective probability is alien to experimental 

validation. This turns out to be repellent to the science which investigates objective situations and strives for 

results independent of the observer.  

 

TLN and TSN negate the existence of a sole probability model and the critiques against the subjective probability lose 

weight (symmetrically also the negative appraisals against the frequentism become paler). In the light of results (2) and (3), 

the disapprovals have completely different import and tone. In fact, TSN proves that P(e1) has no physical meaning and 

remark 3 can but recognize this essential property. TSN leads us to grasp how the subjectivists and Bayesians masters 

conducted an intelligent plan of action to recycle P[E1
(e)

] as epistemic probability. Keynes teaches us how epistemic 

probabilities are not so easy to assess and to check [11], hence this manoeuvre presents limitations 1 and 2 of necessity. 

The landscape emerging beyond TSN shows how the most critical annotations against the subjective model decrease in 

importance. It may be said that the remarks listed above and even other negative commentaries give details about the price 

paid to reuse P(e1) that otherwise should be rejected from the scientific domain.  

 

2.4 Theorem #3 
TSN establishes the lower constraints of the impracticable tests, it is necessary to complete this analysis and specify 

the upper limit for the impossibility of testing P.  

The upper-bound theorem (UBT) holds that if n and z positive integers (n < z) and probability verifies  

 

P(en) = 1/ z.                                                                                     (5) 

 

Then the relative frequency does not fit with the probability in n trials 

  

F(en) ≠ P(en).                                                                                    (6) 
  

In substance the number of trials is to be greater than z in order to employ the relative frequency. 

 

3. What is the Best? 
The results achieved by means of the previous theorems can be summarized in the following way 

 

Frequentist Probability: P(en)               n → ∞                                                      (7a) 
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Subjective Probability: P(en)             1 ≤ n < z                                                     (7b) 

 

3.1 Theorem #4 
The theorem of compatibility (TC) holds that the frequentist and subjective models do not contradict 

 

P(e) = [P(en) with n → ∞] OR [P(en) with 1 ≤ n < z].                                                    (8) 

 

Proof: The frequentist and subjective probabilities derive from the assumptions of TLN, TSN and UBT summarized in 

(7a) and (7b). The hypotheses deal with two disjoined intervals for n, in consequence of this separation (8) is true. 

 

3.2 Remarks about TC 
The founders of the frequentist and subjective schools sustain diverging models and share the same philosophy; they 

assume that probability has only one meaning, they believe there is a sole ‘authentic’ probability model. This philosophical 

opinion is unproven and constitutes a sort of hidden axiom raising endless debates and preventing researchers from 

attacking the core of the interpretation issue. TC disproves the dogmatic assumptions of von Mises, Savage, De Finetti and 

others; TC demonstrates that probability is not a monolith but has a multifold nature.  

TC is consistent with the mind of dualist writers such as Ramsey, Popper, Carnap, Lewis, Constantini and others 

who accept two model of P.  

 
3.3 How to Select the Method 
       The four theorems regulate the exercise of probability and leads to the criterion for the management of statistical 

methods. Specifically, from (8) one can reasonably infer the following rules: 

  

1. If one means to investigate the long-term event (7a), the one must resort to use the classical statistics. 

2. If one means to investigate a single event (7b), he must adopt the Bayesian statistics.  

 

There is no middle way and rules 1 and 2 do not allow exceptions.  

Assumption (7a) is consistent with the classical statistical inference that makes propositions about a population, using 

data drawn from that population with some form of sampling. Bayesian statistics teaches us to update our beliefs in the 

evidence of new data when we have to forecast a future single event. Note how the Bayesian procedures are not confined 

to a lone observation. When a Bayesian applies to a sequel of repeated events, he addresses situations one by one, his 

conclusions regard each individual case. 

 

4. Comments and Conclusion 

1 - Gauss, Hilbert, Einstein and other eminent mathematicians consider simplicity as the virtue of theoretical works, a 

sign of elegance and not a defect. Experts often perceive simplicity to be a characteristic of ‘beautiful’ mathematics 

because it is easier to gain enlightenment from a simple proof compared to a complex proof. The theorems presented here 

sound very simple from the mathematical viewpoint, the illustration very concise and all this should not be deemed as a 

fault.  

2 - In terms of methodology, the present research suggests innovative pathways since it examines the nature of 

probability by means of the mathematical method and rejects the usual philosophical approach which the book [7] shows to 

be dogmatic and arbitrary.  

3 - The subject contents of the theorems provide new answers to knotty controversies that are open since decades. 

Specifically: 

  

a. TLN and TSN tackle the problem of testability that is a typical of science and go beyond the qualitative 

discussion of the probability ‘meanings’.  

b. TLN and TSN demonstrate that there are two different models of probability: P(e∞) and P(e1); and not only 

one. 

c. TSN enables us to grasp how P(e1) is reused as subjective probability instead of being scrapped. 

d. TC proves that P(e∞) and P(e1) are not irreconcilable. 



 

 

 

 

ICSTA 104-5 

e. The impossibility of testing P involves a small set of events whose boundaries are fixed by TSN and UBT. 

f. TC yields a precise guideline to statisticians who are called for selecting the most appropriate methods in a 

project. 

 

Experts are examining the pros and cons of classical and Bayesian methods using empirical and sometimes personal 

criteria, instead rules 1 and 2 indicate a way that descends from theorems and not from individuals’ ideas. 
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