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Abstract - We propose a multistate model to analyse interval-censored event-history data subject to within-unit clustering. The model 

is motivated by a study of the neurocysticercosis evolution at cyst-level, considering the multiple cysts phases within the brain at pre-

scheduled imaging time points. Of interest is the study of the intra-brain distribution of the process leading to cyst resolution, and 

whether this distribution varies with the anthelmintic treatment. We develop a likelihood-based method using Monto Carlo EM 

algorithm for the inference. The practical utility of the methods is illustrated using data from a longitudinal study on albendazole's 

therapeutic effect among patients from six hospitals in Ecuador. 
 

Keywords: neurocysticercosis, multistate model, frailty survival model, correlated disease progressions, interval-
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1. Introduction 
Neurocysticercosis (NC) is an infection of the central nervous system with the larval form of the pork tapeworm.  

When located in the human brain, the larval stage of T. solium appears to pass through three distinct stages of evolution 

before total disappearance [1]. In the first stage, the parasite is viable or alive. These cysts are classified as being in the 

“active” phase. In the second phase, the parasite is degenerating (colloidal and granular-nodular forms) and is targeted by 

the host’s immune system. This stage is called the “transitional” or “degenerative” phase and is most frequently associated 

with symptomatic disease. After the parasite dies, a calcified nodule sometimes remains in its place; this is termed the 

“calcified” phase.   

In this paper, we are interested in formulating a flexible multistate model to describe the evolution of NC cysts and 

estimate the treatment effect on evolution. The data motivating the proposed research come from a randomized clinical 

trial conducted in Ecuador assessing the effectiveness of ALB for newly diagnosed NC patients [2]. Brian image on cyst 

type and location were obtained over five time points (at baseline and 1, 6, 12, and 24 months). We characterize the NC 

evolution with three transient states (active, degenerative, calcification) and one absorbing state (disappearance), as seen in 

Figure 1. 

The multiple cyst phases of the NC data over time construct a multivariate event-history data. The data are interval-

censored due to the fixed-schedule for imaging, the exact times of cyst transition to a new phase are known only within an 

interval. Additionally, when multiple NC cysts evolutions were abstracted from the same patient, those evolutions were 

correlated. Moreover, our data also suffer the so-called left-censoring issue where the onset time of active or degenerative 

cysts is unknown when patients are recruited into the study. Several researchers have considered multistate models for 

interval-censored event-history data, see, for example, [3] and [4]. For intra-subject correlated data, [5] extended frailty 

survival model for interval-censored data and used approximated likelihood methods, e.g., Gaussian-quadrature, for the 

inference. 
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Fig. 1: Four states transition multistate model for NC. 

 

We identified some common strategies in the literature to deal with the left-censoring problem. For example, [3] 

assume that the holding time of the initial state is exponentially distributed, rendering the time origin unnecessary due 

to the memory-less property of the exponential distribution. In this study, we use this strategy to simplify our model 

and focus on interval-censored event-history data subject to within-individual correlation. Our data also present 

missing states and for simplicity, we assume the missing is at random, following the standard handling of missing data 

in literature. The analysis is nontrivial since interval censoring causes theoretical difficulty for the use of counting 

process techniques, hence prohibiting the use of martingale theory.  Numerical methods are often used instead, which 

are often complex, inducing difficulties for the implementation.  The likelihood-approximation methods in literature 

can be computationally very intensive and may even offer convergence problems. For the inference of the multistate 

model in this paper, we use the Monte Carlo EM (MCEM) algorithm, which is more stable and provides ``exact" 

likelihood-based estimation [6]. MCEM algorithm involves multivariate Monte Carlo sampling with rejection, which 

is intrinsically challenging for interval-censored data. Incorporating the handling of correlated data lead to additional 

computational complexity for the implementation.  

The rest of the paper is organized as follows.  Section 2.1 introduces the model and the likelihood. Section 2.2 

discusses the MCEM method and inference.  In Section 3, we apply the method to the NC data. Section 4 gives some 

concluding remarks. 

 

2. Statistical Methods 
2.1. Model and Likelihood 

For an individual 𝑖 with cyst 𝑗, 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛𝑖,we consider the cyst evolution process 𝑦𝑖𝑗(𝑡) ≡𝑦𝑖𝑗,𝑡 for 

time 𝑡, t ≥0 . The transition intensity from state 𝑟 to state 𝑠 at time 𝑡, defined as instantaneous probability, 

𝑙𝑖𝑚𝛿𝑡→0𝑃(𝑦𝑖𝑗,𝑡+𝛿𝑡
= 𝑠|𝑦𝑖𝑗,𝑡 = 𝑟, 𝑥𝑖, 𝜏𝑖) is modelled by 

 

𝑞𝑟𝑠(𝑡|𝑥𝑖 , 𝜏𝑖) =  𝑞𝑟𝑠
(0)(𝑡)exp (𝛽𝑟𝑠

𝑇 𝑥𝑖 +  𝜏𝑖) (1) 

 

where 𝑞𝑟𝑠
(0)

(𝑡) is the transition-specific baseline intensity function which is assumed to follow Exponential distribution, 

𝛽𝑟𝑠
𝑇  are the transition specific regression coefficients, 𝑥𝑖  is the covariate vector (e.g., treatment, demographic variables), 

and 𝜏𝑖  is the individual random effect (aka frailty) which is introduced to account for the intral-brain clustering. The frailty 

can be flexibly specified for each type of transition and is assumed to follow a multivariate normal distribution. 

For the missing states, let 𝐲𝑖𝑗
𝑐  be the complete-data trajectory of the cyst over the pre-scheduled imaging visits 

indexed by 𝑘, 𝑘 = 1, … , 𝑚, thus,  𝑦𝑖𝑗
𝑐 = (𝑦𝑖𝑗,𝑡1

, … , 𝑦𝑖𝑗,𝑡𝑚
). Denote 𝑟𝑖𝑗,𝑘 as the observation indicator of visit 𝑘 at time 

𝑡𝑘  such that 𝑟𝑖𝑗,𝑘 = 1 if state 𝑦𝑖𝑗,𝑡𝑘
 is observed and 𝑟𝑖𝑗,𝑘 = 0 otherwise. Using the conditional Markov assumption, 

the contribution of the cyst to the likelihood of  𝐲𝑖𝑗
𝑐  given the covariates and the random effects can be written as 
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𝐿𝑖𝑗
𝑐 (𝑦𝑖𝑗

𝑐 ) = 𝑃(𝑦𝑖𝑗,𝑡1
) ∏[𝑃(𝑦𝑖𝑗,𝑡𝑘

|𝑦𝑖𝑗,𝑡𝑘−1
, 𝑥𝑖, 𝜏𝑖)𝑃(𝑟𝑖𝑗,𝑡𝑘

|𝑦𝑖𝑗,𝑡𝑘
, 𝑥𝑖, 𝜏𝑖)]

𝑚

𝑘=2

 
(2) 

 

where [𝑃(𝑦𝑖𝑗,𝑡𝑘
|𝑦𝑖𝑗,𝑡𝑘−1

, 𝑥𝑖 , 𝜏𝑖) is the transition probability for a cyst to move from state 𝑦𝑖𝑗,𝑡𝑘−1
 at visit 𝑘 − 1 to state 

𝑦𝑖𝑗,𝑡𝑘
 at visit 𝑘. The quantity 𝑃(𝑟𝑖𝑗,𝑡𝑘

|𝑦𝑖𝑗,𝑡𝑘
, 𝑥𝑖, 𝜏𝑖) in (2) represents the selection-model approach for non-ignorable 

missingness [7]. When missing is assumed to be random, this quantity is constant [8].  Note that the same modelling 

framework apply to the problem of intermittent missing states and the missing due to loss to follow-up. We use the 24-

month imaging time as the end of study. For each cyst in the study, we can classify its progression stage as either active, 

degenerative, calcified, dissolved, or missing, therefore, right censoring is not an issue. 

Let 𝜽 be the collection of baseline hazard parameters, regression coefficients for the transition intensity model (1), 

and the dispersion parameter for the frailty. Under the assumption that the cyst evolution processes are independent across 

subjects, the log-likelihood of the observed data Y is 

𝑙(𝐘|𝜽) =  ∑ log (∫ ∏ [ ∑ 𝐿𝑖𝑗
𝑐 (𝑦𝑖𝑗

𝑐 |𝑥𝑖, 𝜏𝑖; 𝜽)

𝒚𝒊𝒋
𝒄 ∈Ω(𝒚𝒊𝒋)

]
𝒏𝒊

𝒋=𝟏

+∞

−∞

𝒇(𝝉𝒊; 𝜽)𝒅𝝉𝒊)

𝒏

𝒊=𝟏

 (3) 

where the integral can be multi-dimension, 𝒚𝒊𝒋 is the observed profile for the cyst, and Ω(𝒚𝒊𝒋) is the set with all the 

trajectories where missing states are replaced by feasible latent states. For our 4-state survival model, only patterns with 

monotone increase are possible. For example, if 𝐲𝐢𝐣 = (1, 1, 3,•,•) where the • represents missed state, i.e., patient loss to 

follow-up after the first three visits, then we have Ω(𝒚𝒊𝒋) = {(1,1,3,3,3), (1,1,3,3,4), (1,1, 3,4)}. 

 
2.2. Inferences Method -- A MCEM algorithm 

For our data, the key implementation difficulty is that the integral in the likelihood (3) which is typically quite 

intractable, due to the interval-censoring and non-ignorable missing induced structural complexity. When the dimension of 

the random effects is not low, numerical methods such as Gaussian quadrature can be computationally very intensive and 

may offer non-convergence. We therefore offer a Monte Carlo EM algorithm. 

The EM algorithm is a standard approach for likelihood estimation in the presence of missing data. When the E-step is 

extremely complicated, Monte Carlo methods can be used to approximate the expectation, leading to a MCEM algorithm 

[9]. As Monte Carlo sample size is increasing, the approximation can have high accuracy to the true expectation [10]. In 

our case, by treating the random effects 𝝉𝒊 as additional ``missing data", we have ``complete data" (𝑦𝑖 , 𝑥𝑖, 𝜏𝑖)--- where 𝑦𝑖 

represents the observed cyst profile for individual 𝑖 --- and the ``complete-data" log-likelihood function for individual i can 

be expressed as 

 

𝑙𝑐
𝑖 (𝜽) = log 𝑓(𝑦𝑖|𝑥𝑖 , 𝜏𝑖; 𝜽) + 𝑙𝑜𝑔 𝑓(𝜏𝑖; 𝜽) (4) 

 

where 𝑓(𝑦𝑖|𝑥𝑖, 𝜏𝑖; 𝜽) = ∏ [∑ 𝐿𝑖𝑗
𝑐 (𝑦𝑖𝑗

𝑐 |𝑥𝑖, 𝜏𝑖; 𝜽)𝒚𝒊𝒋
𝒄 ∈Ω(𝒚𝒊𝒋) ]

𝒏𝒊
𝒋=𝟏 . 

The EM algorithm iterates between an E-step which calculates the likelihood of missing data given the observed 

data and a M-step that maximizes the likelihood until convergence. To obtain the asymptotic variance-covariance matrix of 

the MLE parameters, we consider the formula in [11] which is a by-produce of Monte Carlo sampling.  

             

3. Data Analysis 
Between 2001 and 2005, researchers at Columbia University, together with physicians at six hospitals in Ecuador, 

conducted a multi-site randomized clinical trial where a total of 178 patients with newly diagnosed NC were recruited [2].  

Patients were eligible to participate if they had experienced a new onset of symptoms associated with NC within two 

months before recruitment and had active or transitional NC cysts identified on CT or MRI image of the brain.  Patients 

were randomly assigned to receive either albendazole (ALB) or placebo, given twice a day orally for eight days.  At 

enrolment, patients were interviewed to collect information about demographics, symptoms, and risk factors for NC.  A 

brain scan was taken at baseline, 1, 6, and 12 months of follow-up.   

We recently acquired the 24-month image data, digitized, and integrated it with the trial data. We then dis-aggregated 

data from the patient to the cyst level and generated a cyst-level dataset with a total of 210 cysts from 112 patients. Among 
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the sample, 59 (52\%) individuals were treated with ALB. The average number of cysts per patient is 1.87, ranging 

from 1 to 8. Over the study period, five patients were loss to follow-up between 6-month and 12-month, and 25 

patients had 12-months imaging done but did not contribute to the 24-months imaging. We excluded patients who 

deceased in the study to allow plausible data augment to the latent states. The objective of our data analysis is to assess 

the therapeutic effect of ALB on the NC cysts evolution, incorporating the handling of data issues. 

 
Table 1: Frequencies of observed transitions for NC data. 

 

 ALB   Placebo 

 act deg cal dis   act deg cal  dis  

act 36 9 2 47  act 58 8 0 24 

deg 0 32 3 30  deg 0 52 5 32 

cal 0 0 42 20  cal 0 0 28 14 

       

Table 1 presents frequencies of observed transitions between the states in the NC data stratified by the treatment 

group. Note that the cases of ``reverse transitions", which are mostly related to imaging reading errors or due to new 

infection at the same location, were removed from the data. There are 10 intermittent missing cases and 30 patients 

were lost to follow-up.   

There are a variety of reasons patients did not have their imaging done. If an individual misses imaging for 

unrelated reasons, then that is not a violation of model assumptions.  Our preliminary analysis shows no association 

between the missing status and the treatment assignment, we therefore, fit the following model for the NC data.  

 

log(𝑞𝑟𝑠(𝑥𝑖, 𝜏𝑖)) =  𝛽0,𝑟𝑠 +  𝛽1,𝑟𝑠𝑡𝑟𝑡𝑖 + 𝜏𝑖 , (4) 

 

where the quantities  𝑞𝑟𝑠(𝑥𝑖, 𝜏𝑖) is defined in model (1), 𝑡𝑟𝑡𝑖 is the treatment assignment for individual with a value  

of ``1" for ALB and ``0" for placebo. Note that the random effects 𝜏𝑖  are included in all the models to account for the  

within-unit clustering.  

We apply our method on NC data. Besides our model, denoted as MCEM, we also fit another model, denoted as 

IND where we assume no within-individual correlation. We apply the algorithm described in Section 2 (implemented 

in R) for the MCEM model while for IND, R’s package msm is used [12]. For the random effects, we start with an 

identity variance-covariance matrix and allow the algorithm to estimate the full structured variance-covariance 

parameters.  
Table 2: Results of multistate model fitting, e.g., Est(se), for NC data. 

 

Table 2 presents the results. The MCEM model tends to report larger standard error which is likely attributed 

to the incorporation of the clustering feature of the data. Both models report significant distributional parameters. 

Also, significant treatment effect are detected on transition from ``active" to ``degeneration,"  

𝛽1,12 and on the transition from ``degenerative" to ``disappearance,"  𝛽1,24. However, the estimates from the `MCEM 

model shows larger differential magnitude than the one assuming independent data. In particular, the treatment 

effect on the transition from the ``active" stage to the ``degenerative" stage is estimated to be 1.21 (  

𝛽1,12 ) with standard error (se) 0.32 under MCEM while the estimate from IND is smaller,  

0.96, se = 0.21. On the other hand, MCEM’s estimate for effect on the transition from ``degenerative" to 

``disappearance" is 0.78 (𝛽1,24), with standard error 0.26 while the estimate and standard error for this effect is 0.64 

and 0.21, respectively, under model IND. 

 

4. Conclusion 

 𝜷𝟎,𝟏𝟐 𝜷𝟎,𝟐𝟑 𝜷𝟎,𝟐𝟒 𝜷𝟎,𝟑𝟒 𝜷𝟏,𝟏𝟐 𝜷𝟏,𝟐𝟑 𝜷𝟏,𝟐𝟒 𝜷𝟏,𝟑𝟒 

IND -2.42(0.11) -4.44(0.26) -2.03(0.10) -3.13(0.15) 0.96(0.21) 0.12(0.62) 0.64(0.21) -0.03(0.30) 

MCEM -3.27(0.27) -4.13(0.48) -2.51(0.31) -2.89(0.39) 1.21(0.32) -0.15(0.73) 0.78(0.26) -0.52(0.41) 
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We have proposed a 4-state Markov joint model for cyst-level NC life course data that is measured over pre-scheduled 

imaging time points and subject to within-brain clustering. By considering several states and related evolution 

simultaneously under the multistate model framework and by incorporating the handling of data complexities, we may 

better understand the evolutionary pathway of NC cysts and how treatment impacts that evolution. When applying our 

methods to the NC data from Ecuador, we found that the treatment significantly accelerated the evolution from the active 

phase to the degenerative phase and the evolution from the degenerative phase to disappearance. While it is well-known 

that ALB kills viable cysts, our finding suggests that ALB also may have effects on degenerative cysts and that warrants 

further research. With regards to the impact of ALB on calcification, we found that ALB hastened the move of active cysts 

to the degenerative stage and from there most cysts transited into disappearance, not calcification. Therefore, we infer that 

ALB does not lead to calcification. These findings on cyst-level transitions and corresponding estimates are useful for 

treatment planning for better care of NC patients. 

Our statistical methods are generally applicable to cohort studies and medical records involving chronic disease in 

which the disease progressions are assessed at intermittent time points from various locations of the body. Inference wise, 

for the frailty induced integral, which is intractable and has high dimension, we developed a Monte Carlo EM algorithm 

for the joint likelihood. Information matrix estimation was generated as the by-product, avoiding the hessian-matrix based 

approach used by numerical methods such as likelihood approximation. As convention, we assume missing at random for 

the loss to follow-up. Our next step is to investigate the approach to incorporate non-ignorable missingness where the 

mixture modelling approach [13] is promising. We will also on seek possible solution to relax the time-homogeneous 

assumption and the Markov assumption.  
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