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Abstract - The main goal of oncology phase I clinical trials is to identify a maximum tolerated dose. Although many authors have 

offered a variety of methods for the maximum tolerated dose, conventional methods have some potential shortcomings. Parametric 

model-based methods may provide incorrect results due to model misspecification because not only little is known about dose--toxicity 

relationship but also the sample size is small. In addition, most methods ignore uncertainty of estimated dose--toxicity relationship in 

their dose selection process. To address these concerns, we propose a Bayesian optimization design for estimating the maximum 

tolerated dose. Our proposed method utilizes a Bayesian optimization framework, so that a distribution of the dose--toxicity 

relationship is nonparametrically estimated and the dose is selected by balanced information between exploration and exploitation to 

avoid concentrating on a local optimum during a trial. Therefore, our proposed method corresponds to the model specification issue 

through utilizing a nonparametric model and enables us to account for uncertainty during dose selections through treating a distribution 

of an estimated curve. In this paper, we introduce a Bayesian optimization design under single-agent trials. We compare it with 

continual reassessment method, modified toxicity probability interval, and a curve-free method based on a product-of-beta prior. 

Simulation results suggest that our proposed method works successfully in the maximum tolerated dose estimation problem in terms of 

correct recommendation of a true maximum tolerated dose and it has a potential as being an alternative to existing methods. 
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1. Introduction 
In oncology phase I clinical trials, the primary objective is to identify a maximum tolerated dose (MTD). MTD is 

defined as the highest dose that does not cause an unacceptable level of dose limiting toxicity (DLT). The continual 

reassessment method (CRM) [1] is one of the most popular methods for estimating an MTD as a parametric model-based 

method. On the other hand, the CRM has a potential risk of model misspecification. The CRM identifies an MTD correctly 

regardless of model misspecification, if sample size is not small. However, dose-finding studies are conducted with a 

limited sample size in practice. Furthermore, little is known about the dose--toxicity relationship at early phase trials. Thus, 

an appropriate model should be carefully selected since the model generally affects its operating characteristics in 

dose-finding studies [2]. In addition, CRM utilizes only average information but ignores uncertainty of the estimated 

dose--toxicity curve in its dose selection. Thus, non-negligible variability is not reflected in the dose selections especially 

at the start of the trial [3]. 

Corresponding to the model specification issue, several nonparametric methods have been introduced to relax such 

strong parametric assumptions. A nonparametric Bayesian method based on a product-of-beta-prior (PBP) [4] can be often 

seen in many articles as a curve-free method. In the PBP, a toxicity probability at each dose level is reparametrized by 

another parameter with a beta prior distribution, so that a prior distribution of a toxicity probability becomes a 

product-of-beta-prior. The modified toxicity probability interval (mTPI) [5] is one of the most popular toxicity interval 

methods based on nonparametric approach. The mTPI can be implemented as simple as the 3+3 [6] without any logistic 

burden, while it is assisted by a beta-binomial model. Because of its simplicity and much better performance than the 3+3, 

the popularity of mTPI has been growing in both research and industry entities. The PBP and the mTPI estimate an MTD 

without strong assumptions, however, there are still some concerns. Like the CRM, the PBP does not reflect non-negligible 
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variability during its dose selection process. The mTPI utilizes a toxicity distribution during its dose selection but 

focuses on only the current test dose, therefore, dose--toxicity relationship connecting all doses is not estimated until 

the end of the trial.  

In order to address these concerns, we propose a Bayesian optimization design for MTD estimation, which applies 

a Bayesian optimization framework [7]. Hereafter, the proposed method is expressed as “BO”. BO is based on a 

different concept from existing nonparametric methods and realizes sophisticated dose selection procedures. BO can 

address the model specification issue by utilizing a nonparametric model for dose--toxicity relationship. It allows a 

much more flexible estimation than existing parametric model-based methods. In addition, BO updates dose--toxicity 

distribution for all doses once patient outcomes are obtained. Based on the updated distribution, the next dose is 

determined by accounting uncertainty of estimated dose-toxicity relationship. 

We organize this paper as follows: We describe our proposed method in Section 2. We explain our simulation 

studies and show results in Section 3. Discussion and Conclusion are shown in Sections 4 and 5, respectively. 

 

2. Bayesian Optimization for MTD Estimation 
We establish an unknown objective function that derives from dose--toxicity relationship. An MTD candidate is 

estimated as the minimizer of the objective function in the explored dose range. As we cannot describe the objective 

function owing to lack of information about the dose--toxicity relationship, we estimate it through observation data.  

 

2.1. Statistical Model for Dose--Toxicity Relationship 
The dose--toxicity relationship is defined by a nonparametric model as follows: 

 

𝑓 (𝑥) =  logit{𝜋(𝑥)} = log [𝜋(𝑥)/{1 − 𝜋(𝑥)}], (1) 

 

where 𝜋(𝑥) = [1 + exp{−𝑓(𝑥)}]−1  is a probability of DLT at a conceptual dose 𝑥  (𝑥 ∈ {𝑥1, … , 𝑥𝐽} ). The logit 

transformation of 𝜋(𝑥) guarantees that 𝜋(𝑥) bounds within the range from 0 to 1 on a finite dose range. 

The number of patients experienced DLT (𝑌) in 𝑛 patients treated at a dose 𝑥 follows a binomial distribution 

𝑌~Bin(𝑛, 𝜋(𝑥)). Thus, the likelihood function at the t-th cohort is given by 

 

 𝐿(𝐷1:𝑡|𝑓) = ∏ 𝜋(𝑥𝑗)𝑦𝑗{1 − 𝜋(𝑥𝑗)}𝑛𝑗−𝑦𝑗𝐽
𝑗=1 , (2) 

 

where 𝐷1:𝑡={(𝑥(1), 𝑦(1)), …, (𝑥(𝑡), 𝑦(𝑡))}; 𝑥(𝑡) and 𝑦(𝑡) denote the test dose and number of patients with DLT at the t-th 

test, respectively; 𝑛𝑗 is the total number of patients treated with 𝑥𝑗 (𝑗 ∈ {1, … , 𝐽}); and 𝑦𝑗 = ∑ 𝑦(𝑘)1[𝑥(𝑘) = 𝑥𝑗]𝑡
𝑘=1 . The 

indicator function 1[𝑥(𝑘) = 𝑥𝑗] returns 1 when 𝑥(𝑘) = 𝑥𝑗. Otherwise, it returns 0. 

 
2.2. Estimation of Dose--Toxicity Distribution and Next Dose Selection 

The Bayesian optimization typically puts a Gaussian process for a prior belief of an unknown function. Therefore, 

BO also places a Gaussian process prior over the unknown function 𝑓, that is, 𝑓~GP(𝑚, 𝑘). The Gaussian process 

prior is specified by a mean function 𝑚(𝑥) and a covariance function 𝑘(𝑥, 𝑥′), where 𝑥 ∈ {𝑥1, … , 𝑥𝐽}. The prior 

function for 𝑚(𝑥)  derives from pre-specified initial guess toxicities. In practice, little is known about the 

dose—toxicity relationship, therefore, 𝑚(𝑥) can be generated by using the getprior function, which is in dfcrm 

package in R, as CRM does. For 𝑘(𝑥, 𝑥′), we apply a squared exponential kernel described as follows: 

 

 𝑘(𝑥, 𝑥′) = 𝜎𝑓
2exp{−|𝑥 − 𝑥′|2/(2𝜌2)}, (3) 

 

where 𝜎𝑓 and 𝜌 are a signal variance and a scale parameter, respectively. For calibration of the kernel parameters, 𝜎𝑓 is 

usually fixed as 1 and 𝜌 is determined to fit the model. The value of 𝜌 indicates the typical distance between turning 

points. Because it is unlikely that there are many turning points in dose—toxicity function, an appropriate search range 

would be from a half to the full length of conceptual doses. Conceptual doses can have any arbitrary values, however, the 

distance between doses should be an equal interval to avoid biased dose selections. In addition, a small value of 𝜏 is added 
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on the diagonal elements of the covariance matrix for computational stability [8]. With this modification, each element is 

expressed as 𝑘(𝑥, 𝑥′) + 𝜏1[𝑥 = 𝑥′]. Once patient outcomes are obtained, a posterior distribution for 𝑓 is estimated in 

Bayesian manner.  

Our goal is to identify which dose level provides the closest toxicity to the target. For reaching the goal, the objective 

function 𝑔(𝑥) is given by 

 

 𝑔(𝑥) = |𝜋(𝑥) − 𝜃|, (4) 

 

where 𝜃 is a target toxicity rate. Because the exact form of 𝑔(𝑥) is unavailable, we design an acquisition function 𝑔(𝑥), 

which is an alternative of the true objective function of 𝑔(𝑥). We utilize one of the most popular acquisition functions 

called lower confidence bound [9]. It provides balanced information between exploitation and exploration on the posterior 

distribution of 𝑔(𝑥). In this paper, the lower confidence bound is defined as the 10-th percentile of the posterior 

distribution of 𝑔(𝑥) as LCB(𝑥). The next dose is selected as follows: 

 

  𝑥(𝑡+1) = argmin
𝑥∈𝐴𝑡

{LCB(𝑥)}. (5) 

 

The admissible dose set 𝐴𝑡 is determined by pre-specified rules and refreshed at each test. In this paper, 𝐴𝑡 includes one 

dose level higher than the current tested dose as a maximum dose for the next candidate, because we assume that no dose 

skipping is allowed in the dose selection to ensure patient’s safety. 

 

2.3. Stopping rules of a Trial and the Final MTD Estimation 
A trial is terminated when it meets either (1) - (3) conditions: (1) all planned patients are treated; (2) P{𝜋(𝑥1) >

𝜃|𝐷1:𝑡} > 𝑝1  when more than a total of 𝑛1  patients are treated; (3) P{𝜋(𝑥𝐽) < 𝜃|𝐷1:𝑡} > 𝑝2  when more than 𝑛2 

patients are treated at the highest dose. The values for 𝑛1, 𝑛2, 𝑝1 and 𝑝2  are specified before the trial.  

Once the trial is completed or terminated, the MTD is determined by the final posterior distribution of 𝑔 as follows: 

 

 MTD = min𝑥[E𝑔{𝑔(𝑥)|𝐷1:𝑡}]. (6) 

 

3. Evaluation of Operating Characteristics 
We present the simulation frameworks and results for two different trials assuming single-agent trials in this section. 

 
3.1. Simulation settings for each method 

Each simulation was computed 1,000 trials. Simulation (a) focused on operating characteristics under lower target 

toxicity rate according to rigidity issues under a specific condition that has been pointed on PBP [10]. In simulation (b), 

MTD with toxicity of 0.3 was explored within 10 dose levels. We compared operating characteristics of BO with those of 

CRM, mTPI and PBP. Table 1 shows toxicity scenarios for simulation (a) and (b). The true MTD under each scenario is 

displayed as bold style. The trial started from the lowest dose. The trial was completed when the total number of patients 

reached the maximum sample size.  

For BO, the initial guesses of the dose—toxicity relationship were generated by the getprior function with 4 

parameters of (𝛿 =0.03, 𝜃, 𝑣 = 𝐽/2, 𝐽) by assuming a power model, where 𝛿 is an indifference half width and 𝑣 is the 

prior guess of MTD. The prior mean function in a Gaussian process was the logit transformed values of the generated 

initial guesses. The kernel parameters for a covariance function were 𝜎𝑓 = 1 and 𝜌=0.7. The value of 𝜏 was 0.05 for 

simulation (a) and 0.07 for simulation (b) based on the computational speed. The conceptual doses were the values from 

0 to 1 divided into 𝐽 evenly. In BO, the trial was terminated early when either stopping rule of (2) or (3) was shown. We 

used 𝑝1 = 𝑝2 = 0.3, 𝑛1 = 9 and 𝑛2 = 3. We implemented BO by using R and the rstan package was used for 

MCMC. 

A power model (CRM-p) and a logistic model with a fixed intercept of 3 (CRM-l) were evaluated as CRM. We set 

initial guesses for each model based on the getprior function. CRM-p had 𝛿 = 0.05 in both simulations (a) and (b). 

CRM-l had 𝛿 = 0.06 and 0.05 in simulation (a) and (b), respectively. Parameters in the getprior except for 𝛿 were 



 

 

 

 

106-4 

the same as those in BO. The values for 𝛿 were determined by [11] through 2,000 simulations. Also, CRM was 

implemented by dfcrm package in R. The MTD was determined based on the final posterior mean that had the 

closest toxicity to 𝜃. 

For mTPI, a prior toxicity distribution at each dose followed a beta distribution Beta(1,1). In the dose 

selection, unit probability mass was calculated for under, proper, and overdosing intervals by assigning 0.05 as a 

pre-specified value that determined the width of toxicity intervals. If P{𝜋𝑗 > 𝜃|𝐷1:𝑡} > 0.95 on a dose level j at 

which at least 6 patients treated, the dose level j and all higher doses were excluded in subsequent cohorts. If the 

excluded dose was the lowest dose, the MTD was not determined for the trial. At the end of a trial, the MTD was 

determined based on the isotonically transformed posterior mean. The mTPI was conducted via East® 6.5. 

For PBP, two prior inputs were utilized based on getprior function with the same parameters as those in 

BO except for 𝛿, while there is no direction if prior inputs from clinicians are unavailable in the original article. 

Hereafter, they were displayed as PBP(𝛿). The posterior expectations for each dose level were estimated by MCMC 

through the rstan package in R. The MTD was determined as a dose level with the closest toxicity level to the 

target toxicity regarding the posterior expectations at the end of a trial. 

 
Table 1: Toxicity at Each Scenario. 

 

Simulation Scenario 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 

(a) 𝜃 = 0.1, 

Maximum 

number of 

patients=30. 

A1 0.05 0.10 0.30 0.70 0.80 0.85 

 

A2 0.10 0.15 0.23 0.33 0.45 0.50 

A3 0.02 0.10 0.15 0.20 0.24 0.30 

A4 0.01 0.05 0.10 0.20 0.33 0.70 

A5 0.01 0.02 0.05 0.08 0.13 0.23 

(b) 𝜃 = 0.3, 

Maximum 

number of 

patients=45. 

B1 0.03 0.05 0.08 0.12 0.16 0.22 0.33 0.47 0.60 0.75 

B2 0.10 0.33 0.45 0.55 0.60 0.65 0.68 0.72 0.75 0.80 

B3 0.02 0.03 0.04 0.05 0.07 0.10 0.12 0.15 0.18 0.26 

B4 0.02 0.10 0.30 0.60 0.80 0.85 0.90 0.95 1.00 1.00 

B5 0.01 0.01 0.01 0.02 0.03 0.04 0.05 0.10 0.30 0.80 

B6 0.05 0.10 0.15 0.30 0.42 0.55 0.65 0.75 0.85 1.00 

 
3.2. Simulation results 

Table 2 shows the results in Simulation (a). As shown in Correct selection (%) in Table 2, BO selected the 

true MTD with higher percentages than other methods in most scenarios. Although PBP (0.08) at scenario A5 

selected only subtherapeutic doses, BO did not show such rigidity. In terms of patient allocation to MTD (%), BO 

allocated more patients to the true MTD than other methods in all scenarios except for scenario A2. Scenario A2 

places the MTD on the lowest dose. In this scenario, BO allocated patients to higher doses than 𝑥1, while the 

average observed toxicity percentages (Observed toxicity (%)) was similar to that of mTPI. 
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Table 2: Simulation (a): Correctly selected percentages as an MTD by Scenario. 

 

 Scenario   BO CRM-p CRM-l mTPI PBP(0.05) PBP(0.08) 

A1 Total number of patients 28.8 30.0 30.0 29.2 30.0 30.0 

 Observed toxicity (%) 15.7 12.4 11.8 14.5 10.4 10.0 

 Patient allocation to MTD (%) 60.8 45.5 46.1 45.8 38.7 41.6 

 Correct selection (%) 75.7 64.6 60.7 62.5 43.4 50.0 

A2 Total number of patients 26.9 30.0 30.0 27.1 30.0 30.0 

 Observed toxicity (%) 17.8 14.1 13.9 17.0 13.1 12.8 

 Patient allocation to MTD (%) 22.4 54.5 55.8 51.1 67.2 61.6 

 Correct selection (%) 40.8 57.1 57.8 39.6 75.9 69.6 

A3 Total number of patients 29.7 30.0 30.0 29.9 30.0 30.0 

 Observed toxicity (%) 12.4 10.9 10.8 11.7 8.4 8.5 

 Patient allocation to MTD (%) 38.8 34.8 36.2 33.4 30.9 34.6 

 Correct selection (%) 49.7 44.3 42.2 36.0 34.8 40.8 

A4 Total number of patients 30.0 30.0 30.0 30.0 30.0 30.0 

 Observed toxicity (%) 10.0 10.3 10.2 11.5 7.6 6.0 

 Patient allocation to MTD (%) 45.6 34.4 30.3 31.1 32.8 44.4 

 Correct selection (%) 57.1 47.6 49.3 49.8 40.0 48.5 

A5 Total number of patients 30.0 30.0 30.0 30.0 30.0 30.0 

 Observed toxicity (%) 6.0 7.6 7.7 8.3 4.7 3.6 

 Patient allocation to MTD (%) 31.3 21.8 20.3 20.4 31.0 0.0 

 Correct selection (%) 44.1 36.4 34.6 29.3 35.0 0.0 

 

Table 3 shows the results in Simulation (b). BO provided good performance compared with other methods 

comprehensively in all scenarios in terms of correct selection of the MTD. The results of patient allocation to the MTD 

supported these results. On the other hand, the observed toxicity (%) in BO tended to be slightly higher than other methods 

depending on scenarios. Although the differences were minimal and most observed values were close to the target toxicity 

rate, it is expected to address overdose allocations in future work. 
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Table 3: Simulation (b): Correctly selected percentages as an MTD by Scenario. 

 

 Scenario   BO CRM-p CRM-l mTPI PBP(0.05) PBP(0.08) 

B1 Total number of patients 45.0 45.0 45.0 45.0 45.0 45.0 

 Observed toxicity (%) 25.2 18.7 19.5 26.8 24.8 22.0 

 Patient allocation to MTD (%) 30.9 17.5 18.8 28.1 33.3 21.5 

 Correct selection (%) 48.1 38.1 40.2 41.5 51.1 34.5 

B2 Total number of patients 45.0 45.0 45.0 45.0 45.0 45.0 

 Observed toxicity (%) 36.2 31.6 31.0 31.1 33.2 33.6 

 Patient allocation to MTD (%) 39.2 53.1 54.1 43.2 40.3 43.0 

 Correct selection (%) 66.7 69.5 74.8 51.4 61.8 61.7 

B3 Total number of patients 45.0 45.0 45.0 38.5 45.0 45.0 

 Observed toxicity (%) 16.6 11.2 11.6 15.6 16.1 14.3 

 Patient allocation to MTD (%) 34.7 9.2 10.2 41.9 34.6 23.4 

 Correct selection (%) 67.6 33.3 37.3 36.0 74.7 64.7 

B4 Total number of patients 45.0 45.0 45.0 45.0 45.0 45.0 

 Observed toxicity (%) 32.6 30.4 29.5 28.6 30.7 31.0 

 Patient allocation to MTD (%) 64.6 57.7 59.0 61.3 61.5 64.3 

 Correct selection (%) 87.4 84.5 84.2 70.5 84.6 85.2 

B5 Total number of patients 45.0 45.0 45.0 45.0 45.0 45.0 

 Observed toxicity (%) 21.7 15.4 16.7 23.1 20.6 18.8 

 Patient allocation to MTD (%) 42.3 26.9 29.2 55.6 39.0 36.1 

 Correct selection (%) 77.0 70.5 81.4 71.2 70.0 75.8 

B6 Total number of patients 45.0 45.0 45.0 45.0 45.0 45.0 
 Observed toxicity (%) 31.1 26.6 26.1 29.9 29.8 29.1 
 Patient allocation to MTD (%) 37.0 38.2 38.3 37.1 36.8 39.6 
 Correct selection (%) 61.6 62.7 61.7 50.9 54.5 57.2 

 

4. Discussion 
BO provided consistently higher correct selection percentages than other methods, however, additional overdose 

control might be needed depending on situations. For example, an admissible dose set based on a toxicity probability 

distribution can be determined by more conservative settings. We can also rearrange the final candidates for the MTD 

selection by using the updated toxicity probability distribution, while the current proposed method selects the MTD 

from all doses. In this paper, the simulation scenarios were relatively simple settings, therefore, it might be difficult to 

show dramatically differences among methods. If the dose--toxicity relationship is more complex, it becomes more 

difficult to apply strong assumptions before the trial. Therefore, as our next evaluation, we are addressing applications 

of a Bayesian optimization framework to identify a single MTD or MTD contour assuming trials for combination 

therapies. 

 

5. Conclusion 
We introduced basic concept of applying a Bayesian optimization framework to MTD estimation under 

single-agent trials. BO is categorized to curve-free methods but a novel approach for MTD estimation. In this paper, 

we presented the results based on two different simulation studies to evaluate BO by comparing it with CRM, mTPI 

and PBP. In the simulation results, BO provided consistently better or comparable performance among almost all 

scenarios, while other methods yielded good results in one scenario but very poor results in another. Further numerical 

investigations would reveal more detailed properties of BO and it remains a challenge for future work to address 

overdose control and establish a calibration approach of design parameters, however, the simulation results lead to the 

conclusion that BO has a potential to be an alternative to the existing methods. 
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