
Proceedings of the 2𝑛𝑑 International Conference on Statistics: Theory and Applications (ICSTA’20)
Prague, Czech Republic Virtual Conference – August 2020
Paper No. ICSTA 126
DOI: 10.11159/icsta20.126

Comparative Evaluation of Different Emulators for Cardiac Mechanics
David Dalton1, Alan Lazarus1, Dirk Husmeier1

1School of Mathematics and Statistics, University of Glasgow,
Glasgow G12 8SQ, UK

d.dalton.1@research.gla.ac.uk; a.lazarus.1@research.gla.ac.uk; dirk.husmeier@glasgow.ac.uk

Abstract - This paper outlines a comparison of different emulation based approaches to the task of parameter inference in a biomechanical
model of the left ventricle of the heart, where the emulation models can account for variations in left ventricle geometry. Models
considered include Gaussian processes, neural networks and random forests. We are able to achieve accurate parameter estimation for two
of the model parameters, while the extension of statistical emulation to the multi geometry case allows us to observe identifiability issues
in some of the model parameters. This was not observed in our previous single geometry emulation studies. Overall, this study shows the
ability to generalize the single geometry emulation strategy to multiple geometries, pushing us closer towards in clinic decision support
systems.
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1. Introduction
Recent advances into differential-equation based models of cardiac mechanics have demonstrated the potential for their

use in a clinical setting for the diagnosis of cardiac defects [1]. One such model is the Holzapfel-Ogden (HO) constitutive
law [2]. The HO law describes the deformations and stress-strain behaviour of the left-ventricle heart during diastole, given
stiffness levels in the cardiac tissue. Finding these stiffness parameter values is of clinical interest to help detect problems in
cardiac behaviour, however they cannot be directly measured by non-invasive means. One possible, non-invasive approach to
determining the parameters is to make use of Magnetic Resonance Imaging (MRI) scans to measure the beginning and end
diastolic states of the LV. We can then estimate the stiffness levels as those values which minimise the difference between the
quantities extracted from the MRI, and those predicted by the model. In a proof of concept study [3], it was demonstrated
that this approach led to an improved and clinically relevant understanding of cardiac function. Unfortunately, calibrating the
physiological parameters in this manner is extremely computationally expensive, as the system of partial differential equations
that describe the mechanics of the LV have no closed form solutions. Instead, numerical procedures based on finite element
discretisation are required, which can take several minutes to converge on a high performance computer. Since a typical
parameter optimisation may require this process to be iterated hundreds or thousands of times, it is rendered unsuitable as a
real-time clinical decision support tool.

One method which can be used to overcome these computational costs is emulation [4]. In emulation, we approximate the
simulator with a statistical surrogate model called an emulator, which is trained on a number of evaluations from the simulator.
While generating these simulations is extremely computationally costly, all of the computations can be done in advance of
clinical deployment. In clinic, fast parameter estimates for a patient can then be made by minimising the discrepancy between
the quantities measured by MRI and the corresponding values predicted by the computationally cheap emulator.

This work compares different methods, including Gaussian processes, neural networks and random forests, on the task
of emulating the HO model which allows for a subject’s specific LV geometry to be accounted for. This builds on earlier,
proof of concept work [5, 6], which demonstrated the effectiveness of emulation for a fixed LV geometry. Accounting for
subject-specific variations in LV geometry is crucial for practical applications. We compare the parameter estimation accuracy
of each emulation approach on a test set of independent samples simulated from the model, for which the true parameter
values are known.

2. The Holzapfel-Ogden Law
The HO law models the dynamics of the muscle tissue of the LV, known as the myocardium, during diastole. Diastole is

the passive period of the cardiac cycle during which the heart fills with blood. To simulate the diastolic behaviour of a given
LV, the model requires two primary inputs. The first of these is a finite element reconstruction of the LV geometry, which
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we denote H . Patient-specific reconstructions can be generated in real-time from MRI scans, the details of which have been
previously reported [5]. Secondly, we must specify the material parameter vector

𝝃 = (𝑎, 𝑏, 𝑎f , 𝑏f , 𝑎s, 𝑏s, 𝑎fs, 𝑏fs) (1)

where 𝑎 and 𝑏 are the isotropic stiffness of the tissue, 𝑎f and 𝑏f are the values of the tissue stiffness in the fiber direction, 𝑎s
and 𝑏s are the sheet direction stiffness values, while 𝑎fs and 𝑏fs describe the stiffness due to the combination of both the fiber
and sheet directions. The constitutive law for the passive myocardium is then given by the following strain energy function:

Ψ =
𝑎

2𝑏
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2
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where 𝐼1, 𝐼4i and 𝐼8fs are a-priori known invariants, defined as:

𝐼1 = tr(C) 𝐼4f = f0 · (Cf0) 𝐼4s = s0 · (Cs0) 𝐼8fs = f0 · (Cs0) (3)

where C is the right Cauchy-Green tensor, while f0 and s0 are the fibre and sheet orientations respectively. This strain energy
function can then be differentiated to get the forces acting on the myocardium. By applying appropriate conservation laws, we
can get equations of motion, and from there predict LV behaviour during diastole. For further details, the reader is directed to
the original publication [2].

3. Parameter Estimation
Myocardium stiffness during the passive stage of the cardiac cycle can be used to make a thorough evaluation of LV

functionality. For example, it has been shown that these stiffness levels are much higher in patients with diastolic heart
failure than the levels found in healthy control subjects [7]. It is for this reason that the determination of the biophysiological
parameter vector 𝝃 is of interest, however direct measurements of the eight stiffness levels require the heart to be extracted
from the patient, and therefore can only be done in post-mortem autopsy. Non-invasive procedures, such as MRI scans, are
instead limited to observing patterns in the deformations of the LV during the pump-cycle. It is here that the HO law presents
an opportunity for clinical use, as it can also model these deformations, given a set of parameter values. Thus, we can obtain an
estimate of the parameters by finding those values which minimise the discrepancy between the quantities we extract from the
MRI scans, and the corresponding outputs of the model. This requires a choice of which specific outputs should be extracted
from the scans for inclusion in the minimisation procedure. In accordance with previous work [5, 6], we here concentrate on
25 outputs; LV volume at end-diastole, and circumferential strain values at 24 locations on the LV surface.

Determining 𝝃 for noisy, real world data can be challenging. The sensitivity analysis carried out in [8] suggests that
when only extracting circumferential strains and volume from the MRI scans, some parameters are only weakly identifiable.
Further identifiability issues are caused by strong correlations between the stiffness values. For this reason, here we focus on
parameter estimation for a reduced form of the HO law as described in [8], which makes use of the linear redundancy in 𝝃 to
express it in terms of four parameters, which we denote

𝜽 = (𝜃1, 𝜃2, 𝜃3, 𝜃4)T (4)

We also denote the measured quantities from the MRI, after non-dimensionalisation, by

y = (y0, y1, . . . , y𝐾 )T (5)

where 𝑦0 is the non-dimensionalised LV volume, and 𝑦1, . . . , 𝑦24 are the non-dimensionalised circumferential strains,and the
corresponding outputs from the HO model, which depend on the cardio-mechanic parameters 𝜽 and the LV geometry, H , as:

f(𝜽 ,H) =
(
f0(𝜽 ,H), f1(𝜽 ,H), . . . , f𝐾 (𝜽 ,H)

)T
(6)
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An estimate of 𝜽 can then be found for a given LV geometry H by minimisation of some loss function 𝐿:

�̂� = arg min
𝜽

𝐿 (𝜽) (7)

where a standard choice of loss is the mean squared error:

𝐿 (𝜽) = 1
𝑀 + 1

𝑀∑
𝑘=0

(y𝑘 − f𝑘 (𝜽 ,H))2 (8)

While this approach appears to provide a method for non-invasive estimation of a patient’s passive myocardial stiffness levels,
it faces prohibitive computational costs. This is because finding a solution to (7) requires the use of an iterative optimisation
algorithm, which may require hundreds or thousands of iterations to converge. At each iteration, a forward simulation of the
HO model is required, which takes several minutes on even a high performance computer. Therefore, this method is not viable
for use as a real-time clinical decision support tool.

4. Emulation
One method which has the potential to overcome this computational burden is emulation. An emulator f̂ is a statistical

surrogate model which approximates a computer simulator f, based on a data set of input-output pairs from the simulator:

D = {(xi, f (xi), 𝑖 = 1, 2, ...𝑁} (9)

In the context of the HO model, the inputs are the parameter vector 𝜽 and LV geometry H , so we have xi = (𝜽 𝑖 ,H𝑖) above.
The location of the 𝑁 inputs points can be chosen using a space-filling design to ensure a dense coverage in the region of
interest. The advantage of emulation methods for our purposes is that we can perform these 𝑁 costly simulator runs and train
the emulator in advance of clinical deployment. When patient data becomes available in clinic, we can replace f with f̂ in (7)
to obtain parameter estimates in real time, as predictions from the emulator can be made several orders of magnitude faster
than predictions from the simulator.

It is important to quantify the loss in parameter estimation accuracy incurred when using the surrogate emulator in place
of the simulator. This can be done by creating an independent test set of inputs and outputs for the HO law, Dtest in the same
manner as (9). We then estimate the input parameters for each test point by minimising the loss between the simulator outputs
and the outputs of the emulator. The accuracy of these estimates can subsequently be evaluated by comparing them to the
known true parameters values.

Recent research into the use of emulation methods for parameter inference in the HO law has demonstrated these methods
can accurately replicate the results of the underlying simulator. Initial work demonstrated the effectiveness of independent,
local GPs, one for each output of the simulator [5]. Further research then improved on these results by using a single,
multivariate output GP to model all simulator outputs simultaneously [6]. Both studies above concentrated on parameter
inference for the fixed LV geometry of a healthy volunteer. For practical deployment however, the emulation must also be able
to account for the specific LV geometry of a patient, which will not be known in advance of their arrival in clinic. Emulation
methods which can account for subject-specific geometries are thus the remit of this work.

5. Data
As outlined above, the LV mathematical model takes as input the material properties describing the stiffness of the

myocardium, 𝜽 , and a LV mesh, H . In order to train an accurate emulator, we need to generate a data set that has dense
coverage over the space of possible configurations of parameters and LV geometries. The problem is that each LV mesh has
a dimension of over 17,000. Generating a data set that has dense coverage over a space of this dimensionality is impossible.
Therefore, we require a representation of the LV meshes that is low enough in dimension to make emulation possible, but
that also accurately reconstructs the original meshes when projected back to the original high dimensional space. In a
previous study [9], we have found that principal component analysis (PCA) provides the same reconstruction accuracy as
competing methods at lower computational costs. Given the choice of PCA, deciding how many dimensions our reduced LV
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representation should consist of is equivalent to selecting the number of principal components (PCs) to use. As we use more
PCs, the discrepancy falls between the outputs of the simulator when the original mesh is inputted and the outputs when the
reconstruction from the PC representation is used. However, increasing the dimensionality of the LV representation makes
it more difficult for the emulator to accurately replicate the results of the simulator, as it must learn a function in a higher
dimensional space. With this trade-off in mind, we here opt for a representation using 5 PCs, trained on a set of 135 discretised
LV geometries. From Figure 1(a) we see that with 5PCs, almost 90% of the variation in the original geometries is retained.
As a result, when we project back to the original space, we obtain low reconstruction error. A sample 5PC reconstruction is
shown in red in Figure 1(b), alongside the original mesh in blue.
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Fig. 1: For emulation, we require a low dimensional representation of the LV mesh. In (a) we plot the cumulative proportion of variation
explained in the geometry data against the number of principal components. In (b) show an initial mesh (endocardium and epicardium)
in blue along with a reconstruction of the mesh in red. This reconstruction is obtained by projecting into the low dimensional space and

then transforming back into the initial space.

Combining the 5 dimensional PC space with the 4 dimensional material property space, we now have a 9 dimensional
space to be emulated over. By using a Sobol sequence [10], we generated a batch of input points within physiological realistic
boundaries, and ran forward simulations from each point. Some simulations crash, so we ran in excess of 16,000 and took the
additional successful simulations as a test set. This provided a test set of size 539.

6. Emulation Methods
6.1. Gaussian Processes

Gaussian process (GP) regression is a powerful, non-parametric Bayesian modelling technique. For a comprehensive
overview, the reader can see [11]. A stochastic process is referred to as a Gaussian process if any finite subset of random
variables from the process has a Gaussian distribution. A GP can be used in a Bayesian regression context by considering it
as a prior directly on the space of functions of interest

f(x) ∼ GP(𝜇(x), 𝑘 (x, x′)) (10)

where the mean function 𝜇(x) and positive definite kernel function 𝑘 (x, x′) completely specify the GP. For this work, we
considered constant mean functions and linear mean functions respectively. For the kernel, we chose the ARD squared
exponential kernel

𝑘 (xi, xj) = 𝛼2exp

(
−1

2

𝐷∑
𝑘=1

(𝑥𝑖𝑘 − 𝑥 𝑗𝑘)2

ℓ2
𝑘

)
(11)

Given a set of training data, the prior GP can be updated using Bayes Theorem to a posterior distribution, which is itself
Gaussian, over a collection of finite test points of interest. GPs have proved popular for the purposes of emulation, as they can
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offer exact interpolation of deterministic simulator outputs [4]. The main drawback with the GP framework is that training
time grows cubicly with the number of inputs and prediction times grow quadratically. This complexity precludes the use of
a standard GP model for emulation of the data set under consideration here. For this reason, we instead use three variants of
the GP approach, and these are explained below.

6.1.1. Sparse Gaussian Processes
Sparse GPs offer an alleviation of the computational costs of full Gaussian process models. Using a set of 𝑚 inducement

points, these methods replace the marginal likelihood with a cheaper approximation, reducing computational complexity for
a dataset of size 𝑛 to O(𝑛𝑚2) [12]. While optimization of inducement points can proceed under different frameworks, in this
paper we follow the variational approach. Here, the inducement points are treated as variational parameters and optimized
alongside the kernel hyperparameters [13]. Using an inducing set of size 2000, we build 25 Gaussian process emulators
for each of the model outputs. With the aim of keeping computational costs down, optimization of the material properties
proceeds by first exploring the global loss function by evaluation of a massive set of material property configurations (1× 105

were used in total). We then initialize a gradient descent optimizer from the best point to find the parameter estimate.

6.1.2. Local Gaussian Process Regression
Local GPs make a prediction at a test point of interest by using a GP trained on the point’s 𝑘 nearest neighbours in the

training data [14]. Since the size of this local neighbourhood can be chosen to be much smaller than the full data set, we
can make significant computational savings compared to the standard GP approach. Previous work has shown that local GPs
can effectively emulate the HO model, whether the local GP is calculated with respect to input space or output space [6].
The problem with using a local GP in input space is that this requires the model to be refit at each stage of the parameter
optimisation. For this reason, local GPs in output space are considered here, as this neighbourhood remains the same at each
iteration. Using local GPs requires a value of 𝑘 to be chosen. To do so, we extracted an independent validation set of 1,000
points from the training data. A number of local GP emulators with different values of 𝑘 were then used to infer the parameters
in the validation set, trained on the remaining training data. Each emulator was composed of 25 separate local GPs, one
for each output. Prediction accuracy was found to increase monotonically with 𝑘 , however so did computation times. We
therefore decided on a value of 𝑘 = 500 to balance this accuracy/efficiency trade-off.

6.1.3. Patchwork Kriging
Patchwork Kriging [15] is a development of the local GP approach. It first partitions the input space into 𝐾 regions called

patches, and fits separate, but dependent, local GPs to each patch. The dependency is enforced through the introduction of a
number of "stitching points" along the boundaries between regions. These stitching points are treated as fictitious data points,
through which the GPs of adjoining patches are constrained to have the same mean and variance. To perform patchwork
kriging, we must choose the number of patches 𝐾 , and the number of stitching points to put along the boundary of each patch.
We did this by comparing the validation set output space prediction accuracy of different emulators, each comprised of 25
patchwork GPs, trained over a grid of the different patches and stitching points combinations. We found 64 patches to be
optimal, and that accuracy increased as the number of stitching points increased, but at increased computational costs. For
this reason, 3 stitching points were used on each boundary, to balance accuracy and efficiency as above.

6.2. Neural Networks
One of the downsides of the local and sparse Gaussian process procedures outlined above is the need to ignore some

training data in the model fitting process. Neural networks offer a highly flexible, but parametric, alternative to GPs.
Abandoning the non parametric nature enables more efficient predictions from the trained model independent of the initial
training dataset, while also allowing us to train with the full set of data [16]. If we assume a 2 hidden layer network, we must
decide the number of nodes in each layer as well as the activation functions. Using a validation set of size 1000 (leaving a
training set of 15000 points) we selected the network architecture leading to the best predictive performance on the held out
dataset. Low computational cost of prediction from neural networks means that we can implement gradient descent from
multiple start points to estimate the material properties. We use 100 local optimizers, initialized from random points and
choose the best optimized parameter as our estimate.
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6.3. Radial Basis Function Interpolation
A radial basis function (RBF) interpolator of a function f(x) takes the form of a weighted sum of radially symmetric

functions 𝜙:

f̂(x) =
𝑁∑
𝑖=1

w𝑖𝜙(| | x − xi | |), (12)

given a training data set as in (9). The weights w𝑖 can be found as those values which give exact interpolation to the training
data. A number of different choices of basis function for the RBF emulator were compared in terms of parameter estimation
accuracy on the held out validation set of 1,000 points. The cubic basis function:

𝜙( | | x − x′ | |) =| | x − x′ | |3 (13)

was found to achieve the best results, so this was used for prediction on the test data set.

6.4. Random Forests
Random forests [17] regression is a non-parametric modelling technique which makes prediction by averaging over an

ensemble of randomised decision trees. The randomness is introduced by only considering a random subset of predictors
and training points respectively at each node as we grow the decision trees. While each tree grown in this manner is weakly
informative, by averaging their results we can obtain strong predictions. A validation set was used to tune the size of the
ensembles and level of randomness in the feature and data sampling for each output dimension respectively.

7. Results
We compare the seven emulation methods outlined in Section 6 based on their parameter estimation error on the

independent test set of 539 points described in Section 5. These parameter estimates were found by minimising the MSE
between the true simulator outputs and the outputs of the respective emulators:

�̂� 𝑗 = arg min
𝜽

| | f(𝜽 𝑗 ,H 𝑗) − f̂(𝜽 ,H 𝑗) | |2 (14)

for all test points 𝑗 = 1, 2, ..539 using iterative optimisation methods. We then evaluated the MSE between the true and
predicted values:

MSE 𝑗 =
1
𝐷

𝐷∑
𝑘=1

(𝜃 𝑗𝑘 − 𝜃 𝑗𝑘)2 (15)

where 𝐷 = 4. Following this procedure for all seven emulation methods, we obtain a list of 539 MSEs for each method
respectively. The median, first quartile and third quartile of each of these lists is given in Table 1.

Table 1: Test Set Parameter Estimate Mean Squared Errors

Method 25th Perc. Median 75th Perc.
Sparse GP 3.3 × 10−2 1.1 × 10−1 2.5 × 10−1

Local GP 4.3 × 10−3 1.6 × 10−2 4.7 × 10−2

Patchwork GP 4.1 × 10−2 1.3 × 10−1 3.6 × 10−1

Neural network 6.6 × 10−3 2.1 × 10−2 6.0 × 10−2

RBF 7.2 × 10−3 2.3 × 10−2 8.8 × 10−2

Random Forests 4.0 × 10−1 9.6 × 10−1 1.85

Table 1 shows that neural networks, RBFs and local GPs attained the best parameter estimation accuracy with patchwork
kriging and sparse Gaussian processes each achieving slightly worse results. The sharp deterioration in accuracy attained
when using the random forest emulator is of note. This was particularly due to the difficulty encountered in estimating 𝜃3 and
𝜃4 with random forests. These two inputs were weakly informative about the simulator outputs, and hence were less frequently
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considered for splitting on when constructing the underlying decision trees. This in turn made it difficult to precisely identify
the values of 𝜃3 and 𝜃4 in the parameter optimisation. The best performing models also encountered difficulty in identifying
the final two dimensions of 𝜽 . This can be seen in Figure 2, which plots the true values of the test set parameters versus
those predicted by the local Gaussian process emulator for each of the four dimensions of 𝜽 respectively. We can see greater
deviations from the red lines, which represent perfect prediction accuracy, for 𝜃3 and 𝜃4 when compared to the first two
dimensions of 𝜽 .
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Fig. 2: Plot of true parameters values of the test set versus those predicted by local GP for each dimension respectively. Points lying on
the red lines of unit slope indicate perfect prediction accuracy.

8. Discussion
The results of this study are encouraging, displaying the ability of the statistical model to generalize the single geometry

mapping to multiple left ventricle geometries. Current results show that for geometries spanned by the 5 principal components,
𝜃1 and 𝜃2 can be accurately identified given the in vivo data. Identifiability issues that did not appear in previous studies have
become apparent in this multi-geometry setting, where higher errors occur in parameter estimates of 𝜃3 and 𝜃4. This can be
explained by considering the physical representation of these parameters. In the current study end diastolic pressure (EDP)
was assumed to be 8mmHg, a value considered sensible for healthy subjects [18]. Outputs of the simulator are known to be
less sensitive to 𝜃3 in this pressure domain, since this parameter relates to the behaviour of the myocardium in the non-linear
portion of the stress-stretch relationship. A solution to this problem that we are currently exploring is to make use of ex vivo
pressure-volume data to allow us to extrapolate the behaviour of the myocardium beyond the in vivo range for each individual
geometry. This information comes in the form of the Klotz curve, an empirical relationship found to exist between the pressure
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and normalized volume [19]. The issue of 𝜃4 is currently more difficult to alleviate. At present, the simulator—and in vivo
data—only relate to circumferential strains from the LV wall. Sensitivity of 𝜃4 primarily to the radial strains means that
information provided by the data about 𝜃4 is limited. In the future we hope to be able to measure and simulate these strains to
enable accurate inference for 𝜃4.
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