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Abstract -We have recently seen impressive methodological developments in quantitative cardiovascular physiology and pathophysiology,
with novel mathematical models for the mechanical and electrophysiological processes of the heart, and fluid dynamical models to describe
the pressure and flow distribution in the blood vessel network. This allows us to gain deeper insight into the state of a variety of serious
cardiovascular diseases. The majority of recent research studies have focused on the forward problem: developing flexible mathematical
models and robust numerical simulation procedures to match characteristics of physiological target data, and the inverse problem: inferring
model parameters from cardiac physiological data with reliable uncertainty quantification. However, when connectingmathematical model
predictions and statistical inference to the clinical decision process, new challenges arise. This paper briefly discusses the complications
that potentially result from closed-loop effects, and the model extensions that are required to reduce the ensuing bias.
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1. Introduction and illustration
Consider a random variable X ∈ R that represents the value of a clinical disease indicator. Based on some adequate

clinical data, which for the purpose of the following discussion do not need to be made specific, we monitor its posterior
distribution p(x) and the risk of the clinical indicator exceeding some tolerance threshold

P(X > τ) =
∫ ∞

τ
p(x)dx (1)

If this risk exceeds some critical value α, P(X > τ) > α, medical treatment, for instance in the form of medication, is
provided. While potentially only aiming at a symptomatic relief, this treatment is assumed to interfere with the patient’s
physiology or pathophysiology and affect the clinical disease indicator. Let Y ∈ Y denote a random variable that represents
the value of the disease indicator upon medical intervention, and let f describe the effect of the treatment: y = f (x). This
treatment effect implies a transformation of the probability distribution of the disease indicator:

py (y) =
∫ ∞

−∞

δ
(
y − f (x)

)
px (x)dx (2)

where δ(.) is the Dirac delta function. The consequence is a potential prediction bias:

P(Y > τ) =
∫ ∞

τ
p(y)dy , P(X > τ) = α (3)

which needs to be accounted for in the clinical decision process. As a simple illustration, assume the posterior distribution
of the clinical indicator prior to the medical intervention is normal, px (x) = N (x |µ, σ2), with mean µ = 0 and variance
σ2 = 1, and that the effect of the medical treatment is a shift of the clinical indicator by ψ ∈ R+:

f (x) =
[ x if x ≤ τ

x − ψ if x > τ
(4)

This can be written in a more concise form as

f (x) = [H (x − τ)](x − ψ) + [1 −H (x − τ)]x (5)
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where H is the Heaviside step function, which is equal to 1 if the argument is positive, and 0 otherwise. We obtain p(y) by
inserting (5) into (2) and making use of the following feature of the Dirac delta function:

δ
(
y − f (x)

)
=

∑
i

1
| f ′(xi ) |

δ(x − xi ) (6)

where {xi } are the roots of y − f (x) = 0. Inserting (5) and (6) into (2) gives:

py (y) =
[ px (y) if y < τ − ψ

px (y) + px (y + ψ) if τ − ψ ≤ y ≤ τ

px (y + ψ) if y > τ

(7)

The apparent probability of the disease indicator to exceed the critical threshold τ will therefore be evaluated as

P(Y > τ) =
∫ ∞

τ
py (y)dy =

∫ ∞

τ
px (y + ψ)dy =

∫ ∞

τ+ψ
N (y |0, 1)dy = G(τ + ψ)

where G = 1 − G and G(.) is the normal cumulative distribution function, whereas the actual probability is

P(X > τ) =
∫ ∞

τ
px (x)dy =

∫ ∞

τ
N (y |0, 1)dy = G(τ) (8)

Since G(.) is strictly monotonously decreasing, G(τ + ψ) < G(τ), the apparent probability is biased and systematically
underestimates the risk of exceeding the critical threshold τ: P(Y > τ) < P(X > τ). Hence, by ignoring the effect of
the treatment on the clinical indicator variable, any clinical decision support system based on this indicator variable will
systematically underestimate the patient’s state of risk.

Fig. 1: Fluid dynamics model of pulmonary blood circulation. See Section 2 for details and a definition of the symbols.

2. Physiological application: pulmonary hypertension
Pulmonary hypertension, i.e. high blood pressure in the lungs, is a major risk factor for a variety of medical conditions,

including inadequate coronary perfusion, stroke and heart failure. Pulmonary blood pressure can differ substantially from
blood pressure in the rest of the body (the so-called systemic circuit) and, as opposed to the latter, can only be measured
invasively. Standard techniques, which are based on right-heart catheterization, can have significant side effects, including
internal bleeding and partial collapse of the lungs.

Recent advances in physiological modelling allow the pulmonary blood pressure to be predicted from the vasculature
geometry and blood flow times series [1], which can be measured non-invasively with computed tomography angiography
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Fig. 2: Schematic representation of our physiological model of pulmonary hypertension and how it is affected by closed-loop effects
following a clinical intervention. See the main text for details.

(CTA) or magnetic resonance angiography (MRA), respectively. The biophysical model depends on various boundary
conditions and physiological parameters, most notably the blood vessel stiffness, which can be estimated with computational
inference procedures; see [2] and [3] for details.

Figure 1 provides a graphical illustration of the model. We are given a blood vessel network, obtained e.g. from CTA
or MRA. Blood flow (q) and pressure (p) in this network are modelled as a function of location (x) and time (t) with partial
differential equations, which have been derived under certain physical assumptions (that the fluid is viscous, homogeneous and
incompressible, and that the flow is axisymmetric, laminar and without swirls). The blood flow at the main pulmonary artery
(at the top of the figure) is measured with ultrasound. The effect of the small blood vessels downstream, which are too small
to be reliably extracted with CTA or MRA, are approximated with electronic circuits composed of two resistances (R1 and R2)
and one capacitance (C)(so-called Windkessel elements), which determine the frequency (ω) dependent impedance Zwk (ω).
The model depends on various material parameters (blood density ρ and viscosity ν), which can be directly measured, and
various geometry parameters (boundary layer thickness δ, blood vessel radius r , cross section area A and reference area A0),
which can be measured with CTA or MRA. However, the clinically critical parameter is the blood vessel stiffness f , which
can not be measured in vivo and has to be inferred, along with the Windkessel parameters, from the blood flow. For details,
see [1].

Figure 2 provides a schematic illustration of the way this model would be used as part of a clinical decision support
system. Given the geometry of the vasculature, most notably the blood vessel diameters (measured with CTA or MRA),
the blood flow (measured with ultrasound) and various boundary conditions (obtained from statistical inference, see [1]),
the model allows the prediction of the pulmonary blood pressure and the blood vessel stiffness (with the statistical inference
techniques described in [2] and [3]).

3. Simulation study
Our simulations are based on the pulmonary circulation model described in [1]. The blood vessel geometry of the larger

blood vessels has been obtained from a CTA scan in a healthy mouse, the effect of the small terminal blood vessels is mimicked
withWindkessel elements consisting of two resistances and a capacitance. This gives three parameters that define downstream
boundary conditions of the partial differential equations (PDEs) describing the blood flow through the pulmonary circuit.
We also assume that the blood flow at the main pulmonary artery (MPA) is measured (with ultrasound), which provides the
upstream boundary conditions for the PDEs. Following [1] and [2], we assume the same stiffness parameter in all blood
vessels, which adds one further parameter to the physiological model. We further assume that the blood flow in the two
daughter vessels of the MPA are measured (with MRI). Our data used for inference are the time courses of the blood flows
through three blood vessels, marked by the numbers 1-3 in Figure 1. The parameters to be inferred are the vessel stiffness and
three Windkessel parameters. Once these parameters have been estimated, the blood pressure in the MPA can be predicted.
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Tomimic the effect of clinical interventions, wemonitor the blood pressure in theMPA, and provide an in-silico vasodilator
whenever the pressure exceeds a critical threshold. Since this is a proof-of-concept study, we use data from mice rather than
humans, and set as an arbitrary threshold the peak pressure found in the hypoxic mice used in the study of Qureshi et al. [1].
We simulate the effect of the vasodilator by increasing the diastolic trough diameter of all blood vessels by the same percentage
amount, whose value is determined by the requirement that upon medical intervention, the peak blood pressure in the MPA
must not exceed the critical value by more than 5%. This bandwidth defines the uncertainty that remains when explicitly
including the closed-loop effect caused by the medical intervention in the model. We compare that with naive parameter
inference that does not include any correction for the medical intervention, and assumes the diastolic blood vessel diameter to
be fixed. We quantify the effect of ignoring the feedback loop with the percentage estimation error of the vessel stiffness. The
results can be found in Table 1.

Table 1: Closed-loop effect and its correction in the biophysical modelling of pulmonary hypertension. Systolic blood flow can be
measured with MRI; the initial geometry of the vasculature, including the diastolic diameter of the main pulmonary artery (MPA), is

available from an initial CT scan. The biophysical model allows the prediction of the pulmonary systolic blood pressure (column 1) and
the vessel stiffness (columns 2-3) with the statistical inference procedure described in [2] and [3]. The table shows the relative blood

vessel stiffness estimation error (median and 95% posterior credible interval) without (column 2) and with a correction for the
closed-loop effect that results from medical interventions triggered by model predictions. Since this is a simulation study ([1]), the true

vessel stiffness is known. Computational Bayesian inference was carried out with the MCMC scheme described in [2] and [3].

Peak blood pressure Relative error without Relative error with
exceeding threshold closed-loop correction closed-loop correction

25 % 1.51% (1.04%,1.97%) -2.0e-03% (-0.37%,0.37%)
50 % 2.52% (2.15%,2.90%) -1.4e-03% (-0.47%,0.46%)
75 % 61.5% (60.5%,62.4%) -0.26% (-7.78%,6.49%)

4. Conclusions
In a clinical application, the prediction of high pulmonary blood pressure above a critical threshold will trigger the

administration of vasodilators, whose effect is the increase of the vessel diameter. However, as illustrated in Figure 2, this
causes a closed-loop effect, whereby the prediction from the model causes an action that alters the conditions under which
the original prediction was obtained. In our simulation study, summarised in Table 1, we demonstrate that ignoring this
closed-loop effect leads to a systematic bias in the estimation of the blood vessel stiffness, which is a critical risk indicator
for vessel wall rupture, stroke and right-ventricle heart failure [4]. Allowing for the medical intervention and including the
ensuing feedback loop in the statistical inference corrects this bias and leads to a substantially improved estimation of the
stiffness parameter.
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