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Abstract - Random effect change-point models are commonly used to infer individual-specific time of event that induces trend change 

of longitudinal data. Linear models are often employed before and after the change point. However, in applications such as HIV studies, 

a mechanistic nonlinear model can be derived for the process based on the underlying data-generation mechanisms and such nonlinear 

model may provide better ``predictions". In this article, we propose a random change-point model in which we model the longitudinal 

data by segmented nonlinear mixed effect models. Inference wise, we propose a maximum likelihood solution where we use the 

Stochastic Expectation-Maximization (StEM) algorithm coupled with independent multivariate rejection sampling through Gibbs’s 

sampler.  We evaluate the method with simulations to gain insights. 
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1. Introduction 
In human immunodeficiency virus (HIV) care, the time from diagnosis to antiretroviral therapy (ART) initiation is a 

critical determinant of success and is not uniform across jurisdictions and patients due to various barriers and other factors. 

While time-updated laboratory testing data on viral loads (RNA copies per millilitre of blood plasma) are reported in routine 

HIV surveillance activities, information on ART is not collected [1]. We consider a statistical modelling method, e.g., using 

change-point model to estimate and infer ART initiation time. Such change-point model has biological interpretation where 

the ART initiation induces trajectory change of the underlying process of HIV dynamics.  

Random change-point models which allow for individual-specific changes for longitudinal outcomes have been widely 

used in medical research [2]. A general way to define a class of random change-point models is to assume a linear mixed 

effects model for the longitudinal data before and after the change point, i.e., segmented linear mixed effects model (see, 

e.g., [3], [4], [5]). In some applications such as the motivation example above, however, the longitudinal data may be missing 

or censored due to detection limits. In this case, the assumed linear model based on the observed longitudinal data may be 

inappropriate for the (unobserved) data. If, on the other hand, a mechanical or scientific model is available for the longitudinal 

data, such mechanical model can be used to better ``predict" the unobserved data, leading to better estimate of the change 

points. Such a mechanistic model is often nonlinear. In this article, we consider random change-point models where we 

model the longitudinal data by nonlinear mixed effects (NLME) models. 

The aim of this paper is to propose and evaluate a segmented-NLME model for longitudinal data. we consider a full 

likelihood-based inference via the implementation of the stochastic version of the EM algorithm, a.k.a. StEM algorithm, 

proposed by Diebolt and Celeus [6]. The StEM algorithm has been proved to be computationally efficient algorithm as only 

one realization of the missing data is required for each iteration [7]. The major challenge of accounting random change point 

in likelihood framework is regarding the inference (see, e.g., [8]). In the case of StEM, it is further complicated by the issue 

of convergence [9]. 
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In Section 2, we describe the HIV dynamics, the nonlinear random change-point model in general form, and the 

estimation and inference procedure.  We evaluate the method with a designated simulation study in Section 3, focusing 

on the assessment of a Geweke-based convergence criteria. We conclude the article with some discussions in Section 4. 

 

2. Nonlinear Random Change-point Model and Estimation Procedure 
2.1. HIV Dynamics, Notations and the Models 

Typically, viral load shows a dramatic fluctuation after HIV infection before reaching to a set-point and will then 

increase with a steady rate until the development of AIDS if without treatment [10]. ART initiation, however, will 

induces substantial reductions in HIV RNA. There is extensive research for HIV dynamics after ART, essentially 

associated with the purpose of assessing antiretroviral drug's therapeutic effect. Based on biological and clinical 

arguments, Wu and Ding [11] proposed to approximate viral load data pattern by the virological model 𝑉(𝑡)  =  𝑃1 +
 𝑃2𝑒−𝜆 where V(t) is the total virus at time t and 𝑃1 and 𝑃2 are baseline values for each phase. Parameters 𝝺 is the viral 

decay rates and may be interpreted as the turnover rates of productively infected cells and long-lived and/or latently 

infected cells if the therapy is perfect. 

Motivated by the problem of estimating ART initiation time after HIV diagnosis [1], we may consider the following 

nonlinear random effects change-point model for the reported viral load for individual i at time  𝑡𝑖𝑗 after diagnosis in a 

typical HIV surveillance data 

 

                            𝑙𝑜𝑔10(𝑉(𝑡𝑖𝑗))  =  𝑎1𝑖(𝑡𝑖𝑗 −  𝜏𝑖)−  + 𝑙𝑜𝑔10(𝑏1𝑖 + 𝑏2𝑖𝑒−𝑏3𝑖(𝑡𝑖𝑗−𝜏𝑖)+
) + 𝜖𝑖𝑗, 

 

where the 𝑙𝑜𝑔10 transformation is used to stabilize the variance and makes the data more normally distributed. The error 

term is represented by 𝜖𝑖𝑗, 𝜏𝑖 is the change point, functions 𝑥− and 𝑥+ correspond to min(x, 0) and max(x, 0), respectively. 

The quantity 𝑎1𝑖 is the subject-specific regression coefficient representing the slope of viral load before change point, and  

𝑏1𝑖, 𝑏2𝑖 , 𝑎𝑛𝑑 𝑏3𝑖 are subject-specific mixed effects for the viral load trajectory after the change point. We may define 

 

𝑎1𝑖 =  𝛼1  +  𝛼1𝑖 ,       𝑏1𝑖  =  𝛽1  + 𝛽1𝑖, 𝑏2𝑖  =  𝛽2  +  𝛽2𝑖,      𝑏3𝑖  =  𝛽3  +  𝛽3𝑖 , 
 

where 𝛼1, 𝛽1, 𝛽2, 𝑎𝑛𝑑 𝛽3 are the population parameters (fixed effects), 𝛼1𝑖, 𝛽1𝑖, 𝛽2𝑖, 𝑎𝑛𝑑 𝛽3𝑖 are random effects which are 

usually assumed to follow normal distribution with zero mean.  The random change points can be conventionally assumed 

to follow a normal distribution. A log-normal distribution can also be assumed to ensure positive value of the change point 

be estimated. 

In what follows, we present the models and the methods in general forms, illustrating that our methods may be 

applicable in other applications. Let 𝑦𝑖𝑗 be the measurement (can be left-censored) 𝑗 =  1, 2, . . . , 𝑛𝑖 for subject i = 1, 2, 

…, n and let 𝑡𝑖𝑗 be the time when 𝑦𝑖𝑗 is measured. We consider a general segmented-NLME model 

 

                                   𝑦𝑖𝑗  =  𝑔((𝑡𝑖𝑗  −  𝑟(𝜏𝑖))−, 𝑎𝑖)  +  ℎ((𝑡𝑖𝑗  −  𝑟(𝜏𝑖))+, 𝑏𝑖) + 𝜖𝑖𝑗 ,                           (2.1) 

with 

𝜏𝑖 ∼  𝑁(𝞽, 𝞼𝞽
𝟐), 𝒂𝒊 ∼  𝑵(𝞪, 𝑨),        𝒃𝒊  ∼  𝑵(𝞫, 𝑩),      𝟄𝒊 ∼  𝑵(𝟎, 𝞼𝟄

𝟐), 
 

where g() and h() are nonlinear functions, 𝝰 and 𝝱 are vectors of population parameters, 𝞃 is the population mean and 𝞼𝞽
𝟐 is 

the variance for the random change point 𝜏𝑖, A and B are the variance-covariance matrix for random effects 𝒂𝒊 and 𝒃𝒊, 

respectively, and 𝞼𝟄
𝟐 is the within-individual variance. The r() function is introduced to allow possible parameterization 

around the change point.  For the segmented-NLME model, it is reasonable to assume that 𝒂𝒊, 𝒃𝒊 are independent and both 

are independent of  𝜏𝑖 which is usually introduced by external force. 

We consider a likelihood inference procedure for the model (2.1) based on the observed data 𝑦𝑖 =  (𝑦𝑖1, . . . , 𝑦𝑖𝑛𝑖
). 

Let 𝜃 =  (𝛼, 𝛽, 𝜏, 𝞼𝟄
𝟐, 𝞼𝞽

𝟐, 𝐴, 𝐵)  be the collection of all unknown parameters and f() be a generic density function, and 

let f(X|Y) denote a conditional density of X given Y. The observed data likelihood can be written as 
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𝐿(𝜃)  =  ∏ {∭ [∏ 𝑓(𝑦𝑖𝑗|𝜏𝑖, 𝑎𝑖, 𝑏𝑖; 𝜃)
𝑛𝑖

𝑗=1
] ∗  𝑓(𝜏𝑖)𝑓(𝑎𝑖)𝑓(𝑏𝑖)𝑑𝜏𝑖𝑑𝑎𝑖𝑑𝑏𝑖}.                       (2.2)

𝑛

𝑖=1

 

Directly maximizing the likelihood (2.2) is challenging due to the nonlinear models involved and the nested integrals. 

By treating the unobserved random effects, 𝜏𝑖, 𝑎𝑖 , 𝑏𝑖 as ``missing data", we have ``complete data" {(𝑦𝑖 , 𝜏𝑖, 𝑎𝑖 , 𝑏𝑖), 𝑖 =
1, . . . , 𝑛} and complete-data log-likelihood function for individual i can be expressed as 

 

𝑙𝑐(𝜃)  =  𝑙𝑜𝑔 𝑓(𝜏𝑖; 𝜃)  +  𝑙𝑜𝑔 𝑓(𝑎𝑖; 𝐴)  +  𝑙𝑜𝑔 𝑓(𝑏𝑖; 𝐵)  +  𝑙𝑜𝑔 𝑓(𝑦𝑖|𝜏𝑖 , 𝑎𝑖, 𝑏𝑖; 𝜃).                  (2.3) 

 
2.2. The Estimation Procedure 

   The EM algorithm introduced by Dempster et al. [12] is a classical approach to estimate parameters of models with 

non-observed or incomplete data. Let us briefly cover the EM principle. Denote z be the vector of non-observed data and 

the complete data of the model is (y, z). The EM algorithm maximizes the 𝑄(𝜃|𝜃′)  =  𝐸(𝐿𝑐(𝑦, 𝑧;  𝜃) | 𝑦;  𝜃) function in 

two steps, where the 𝐿𝑐(𝑦, 𝑧;  𝜃) is the log-likelihood of the complete data. At the 𝑘𝑡ℎ iteration, the E-step is the evaluation 

of  𝜃(𝑘)(𝜃)  =  𝑄(𝜃|𝜃(𝑘−1)), where the M-step updates 𝜃(𝑘−1) by maximizing 𝜃(𝑘)(𝜃). 

        For the cases in which the E step has no analytic form, Wei and Tanner [13] introduce Monte Carlo EM (MCEM) 

which calculates the conditional expectations at the E step via large number of simulations with each iteration and hence is 

quite computationally intensive. Diebolt and Celeus [6] introduce stochastic versions of the EM algorithm, namely the 

stochastic EM (StEM) which replaces the E-step by a single imputation of the complete data, and then averages the last 

batch of M 

estimates in the resulting Markov Chain iterative sequence to obtain a point estimate of the parameter.  The imputed data 

𝑧(𝑘) at the 𝑘𝑡ℎ iteration are a random draw from the conditional distribution of the missing data given the observed data 

and the estimated parameter values at the (𝑘 − 1)𝑡ℎ iteration, 𝑓(𝑧(𝑘)|𝑦, 𝜃(𝑘−1)). As  𝑧(𝑘) only depends on 𝑧(𝑘−1), 

{𝑧(𝑘)}
𝑘≥1

 is a Markov chain. Assuming that 𝑧(𝑘) take values in a compact space and the kernel of the Markov chain is 

positive continuous with respect to a Lebesgue measure, the Markov chain is ergodic and that ensures the existence of a 

unique stationary distribution (see, e.g., [14], [15]). We now detail the StEM algorithm for the segmented-NLME 

previously presented. At each iteration k+1: 

 

Imputation: Draw missing data (𝜏𝑖, 𝑎𝑖 , 𝑏𝑖) from the conditional distribution [𝜏𝑖, 𝑎𝑖 , 𝑏𝑖|𝑦𝑖; 𝜃(𝑘)]. Specifically, we use the 

Gibbs sampler to generate samples from [𝜏𝑖 , 𝑎𝑖 , 𝑏𝑖|𝑦𝑖; 𝜃(𝑘)] by iteratively sampling from the full conditionals 

[𝜏𝑖|𝑦𝑖 , 𝑎𝑖 , 𝑏𝑖; 𝜃(𝑘)], [𝑎𝑖|𝑦𝑖 , 𝜏𝑖, 𝑏𝑖; 𝜃(𝑘)], and [𝑏𝑖|𝑦𝑖 , 𝜏𝑖, 𝑎𝑖; 𝜃(𝑘)] as follows: 

 

𝑓(𝜏𝑖|𝑦𝑖 , 𝑎𝑖, 𝑏𝑖; 𝜃(𝑘))  ∝  𝑓(𝜏𝑖; 𝜃(𝑘))𝑓(𝑦𝑖|𝜏𝑖 , 𝑎𝑖, 𝑏𝑖; 𝜃(𝑘)), 

𝑓(𝑎𝑖|𝑦𝑖 , 𝜏𝑖 , 𝑏𝑖; 𝜃(𝑘))  ∝  𝑓(𝑎𝑖; 𝜃(𝑘))𝑓(𝑦𝑖|𝜏𝑖, 𝑎𝑖 , 𝑏𝑖; 𝜃(𝑘)), 

𝑓(𝑏𝑖|𝑦𝑖 , 𝜏𝑖 , 𝑎𝑖; 𝜃(𝑘))  ∝  𝑓(𝑏𝑖; 𝜃(𝑘))𝑓(𝑦𝑖|𝜏𝑖, 𝑎𝑖 , 𝑏𝑖; 𝜃(𝑘)). 
 

Monte Carlo samples from each of the full conditionals can be generated using multivariate rejection sampling methods 

[16].  

 

Maximization: After data augmentation, the maximization step involves maximizing the complete likelihood from (2.3). 

For the ``complete data" {(𝑦𝑖 , 𝜏𝑖, 𝑎𝑖 , 𝑏𝑖), 𝑖 = 1, . . . , 𝑛}, the complete log-likelihood no longer involves integrals, which 

substantially simplifies the maximization. Also, due to the mutual independence among 𝜏𝑖, 𝑎𝑖 , 𝑏𝑖 the maximization can be 

done by part. Solving the score equations yields the following equations: 

𝜏 =
1

𝑛
∑ 𝑟(𝜏𝑖)

𝑛

𝑖=1

,   𝜎𝜏
2 =  

1

𝑛
∑(𝑟(𝜏𝑖) −  𝜏)2,

𝑛

𝑖=1

 

𝛼 =
1

𝑛
∑ 𝑎𝑖

𝑛

𝑖=1

,   𝐴 =  
1

𝑛
∑(𝑎𝑖 − 𝛼)(𝑎𝑖 − 𝛼)𝑇 ,

𝑛

𝑖=1
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𝛽 =
1

𝑛
∑ 𝑏𝑖

𝑛

𝑖=1

,   𝐵 =  
1

𝑛
∑(𝑏𝑖 − 𝛽)(𝑏𝑖 − 𝛽)𝑇 ,

𝑛

𝑖=1

 

 𝜎𝜖
2 =  

1

𝑛
∑ {

1

𝑛𝑖
 ∑ [𝑦𝑖𝑗 − 𝑔 ((𝑡𝑖𝑗 − 𝑟(𝜏𝑖))

−
, 𝑎𝑖  )  −  ℎ ((𝑡𝑖𝑗 − 𝑟(𝜏𝑖))

+
, 𝑏𝑖)]

2𝑛𝑖

𝑗=1
} ,

𝑛

𝑖=1

 

 

Muggeo et al. [8] discussed the inference issue for random change-point models and proposed a bootstrap-based approach, 

which is computationally intensive. In this paper, we propose to compute the Fisher information matrix by linearizing the 

g() + h() function around the conditional expectation of the individual Gaussian parameters , {(𝜏𝑖, 𝑎𝑖, 𝑏𝑖), 𝑖 = 1, . . . , 𝑛}, 
extending the approach by Retout et al. [17]. 

    For the convergence of a StEM algorithm, in literature, the commonly used approach is through visually examination of 

the trace plots (see, e.g., [18], [19], [20]). Recently, Zhang et al. [9] proposed a Geweke Statistics based method. Stationarity 

is claimed to achieve when the Geweke statistics is smaller than a designated threshold. 

 

3. A Simulation Study 
In this simulation study, the objectives are two folds: one is to evaluate the properties of the proposed method and 

the other is to assess the feasibility of convergence criteria.  We first emulate the viral load reporting time, which is often 

irregular, in a typical jurisdiction by a progressive state-transition model with first order Markov assumption where the 

length of lagging for a reporting time depends on the previous reporting time. Specifically, the viral load reporting time 

$T$ is assumed to follow an exponential distribution with parameter 𝝽 > 0. Given the previous reporting time u > 0, the 

next reporting time, conditional on u, is 𝑇|𝑢 =  𝑒𝑥𝑝 (𝑙𝑜𝑔 (−
1

𝜉
 𝑙𝑜𝑔(𝑋)  +  𝑢)), for X ∼ Uniform(0,1).  

 

We then generate viral loads based on the following model  

𝑦𝑖𝑗 = 𝑒𝑎𝑖(𝑡𝑖𝑗 − 𝑒𝜏𝑖)
−

 + 𝑙𝑜𝑔10 (𝑒𝑏1𝑖−𝑏2𝑖(𝑡𝑖𝑗−𝑒𝜏𝑖)
+

 +  𝑒𝑏3𝑖−𝑏4𝑖(𝑡𝑖𝑗−𝑒𝜏𝑖)
+

)  +  𝜖𝑖𝑗 .          

The g() = 𝑒𝑎𝑖(𝑡𝑖𝑗 − 𝑒𝜏𝑖)
−

 is a function for the viral load before change point where we parameterize a nonlinear  

form to ensure a positive slope and postive change point. The h() = 𝑙𝑜𝑔10 (𝑒𝑏1𝑖−𝑏2𝑖(𝑡𝑖𝑗−𝑒𝜏𝑖)
+

 +  𝑒𝑏3𝑖−𝑏4𝑖(𝑡𝑖𝑗−𝑒𝜏𝑖)
+

)  

function is a simplified analytical solution of a differential system describing HIV viral load decrease during 

antiretroviral treatment proposed by Perelson et al. [21]. The model has six individual random effects: 

𝑎𝑖 , 𝜏𝑖, 𝑏1𝑖, 𝑏2𝑖, 𝑏3𝑖, 𝑏4𝑖 which are assumed to be additive Gaussian with population mean (fixed) parameters as 

𝛼, 𝞽, 𝞫𝟏, 𝞫𝟐, 𝞫𝟑, 𝞫𝟒 and diagonal covariance matrix. The additive Gaussian error is assumed with a constant variance 𝜎𝜖
2. 

For the fixed effects, the values are those proposed by Mei et al. [10] and Wu and Ding [11]: (𝛼, 𝞽, 𝞫𝟏, 𝞫𝟐, 𝞫𝟑, 𝞫𝟒) = (-

1.97, -1.23, 12, 8, 0.5, 0.05). The inter-subject variability is identical for the six parameters and set to be 0.3 (=𝜎𝛼
2 =

𝜎𝜏
2 = 𝜎𝛽1

2 = 𝜎𝛽2

2 = 𝜎𝛽3

2 = 𝜎𝛽4

2 ), corresponding to a variation coefficient of 55%, which is a realistic inter-subject 

variability in the context of HIV dynamics. We chose a variance 𝜎𝜖
2 = 0.065, which corresponds to a constant variation 

coefficient of 15% for the viral load. 

       For each scenario (see below), we generate 100 datasets. For each dataset, to obtain the initial values of the model 

parameters, we start with a modified version of the log1plus algorithm in [1], denoted as log1plus*. The log1plus* algorithm 

detects ART occurrence by empirically examining pairs of reported viral loads for an individual to see if viral load drops 

more than 1 log10 based unit within certain observing window. We apply this algorithm and use the first reporting time of 

the detected pair as the initial change point. Initial 𝞃 and 𝜎𝜏
2 are the mean and variance across the sample. To obtain initial 

values for other parameters, e.g., those in g() and h() functions, we fit nonlinear mixed effects models using the popular 

iterative linearization method of [22], separately, on the viral loads segmented by the initial change points. 

       Once started the Markov chain with the initial values, the stationarity is determined by using a batch procedure based 

on the Geweke statistic [23]. Let batch size be M.  We use a moving window for the Markov chain and compute the Geweke 

statistics at each increment of $w$ iterations. More precisely, we have the following batch procedure: 
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1. Initialization. Set B=0. Run the StEM algorithm to obtain the initial series of the estimates 

{𝜃(𝑤∗𝐵+1), . . . , 𝜃(𝑤∗𝐵+𝑀)}. 

2. Check stationarity. For each entry p in 𝝷, we compute the Geweke statistic 𝑧𝑝 based on the Markov chain  

{𝜃𝑝
(𝑤∗𝐵+1), . . . , 𝜃𝑝

(𝑤∗𝐵+𝑀)}. based on the mean difference between first 10% and last 50% part of chain. We 

regard stationary being reached when all |𝑧𝑝|s are sufficiently smaller, i.e. 

     

∑ 𝑧𝑝
2

𝑃

𝑝=1

 <  𝜀𝑃 

 

where P is the total number of parameter and we set 𝜀=1.5 as in [9]. 

3. Update. If stationarity is not reached, execute $w$ additional burn-in runs of the chain, increase the number B 

by 1 and then repeat step 2. 

 

 
 

Fig. 1: Trace plots of all parameters in the segmented-NLME model for one typical simulation data. Results from 2000 iterations are 

displayed although for this sample, the convergence is arrived at the 1840𝑡ℎ iteration. 

 

The simulation factors include n, the sample size; M, the batch size; and w, the burn-in incremental. We simulated with 

n=300, 500 and 1000, M=50, 100, 200 and 300, w=10, 20, 30. Figure 1 shows a typical trace plot. Table 1 presents the 

selected simulation results (n=500 or 1000, M=300, w=10) for the fixed effects. Besides the averaged standard error (SE), 

sample based standard deviation (SD), we also calculate the mean squared error (MSE) and the percentage of biases (Bias%) 

by comparing the estimate of the parameter with the true value. In all our simulations, the StEM based method out 

performances the log1plus* approach which is understandable as the latter is essentially an empirical method. Also, we see 

the SEs and SDs are agreeable, indicating the linearization-based inference method works well for the finite sample. There 

are no difference in term of burn-in size but batch size does influence the convergence where smaller batch size like B=50, 

100 and 200 do not seem to capture the distribution. Sample size wise, n = 300 does not seem to capture the heterogeneity 

of the model while there is slightly difference when n=500 and n=100. We recommend the latter if computing power is not 

the issue. 
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Table 1: Simulation results for B=300, m=10 and n=1000/500. 
 

 𝝷 𝝰 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝞃 

Method True -1.97 12.00 8.00 0.50 0.05 -1.23 

                                                                  n=1000 

log1plus* Est -2.36 10.22 5.81 1.56 -1.77 -0.98 

 SE 0.16 2.45 1.49 0.15 0.12 0.18 

 SD 0.14 2.46 1.17 0.21 0.19 0.18 

 MSE 0.26 10.35 4.07 0.68 0.75 0.42 

 Bias% 58.57 -30.69 -37.30 18.06 39.54 -66.95 

        

StEM Est -2.11 11.56 7.77 0.56 0.12 -1.15 

 SE 0.13 2.44 1.33 0.17 0.14 0.17 

 SD 0.13 2.48 1.45 0.12 0.33 0.14 

 MSE 0.11 1.12 1.41 0.12 0.14 0.15 

 Bias% 19.57 -2.59 12.85 -1.87 11.56 -6.89 

        

                                                                   n=500 

log1plus* Est -2.45 11.08 6.98 1.47 -1.79 -0.99 

 SE 0.21 2.60 2.15 0.27 0.32 0.21 

 SD 0.24 2.76 2.14 0.45 0.39 0.26 

 MSE 0.30 11.88 2.95 0.92 0.74 0.44 

 Bias% 77.45 -31.97 -23.88 10.12 27.73 -65.44 

        

StEM Est -2.22 11.57 8.06 0.64 0.15 -1.10 

 SE 0.19 2.69 2.10 0.21 0.17 0.21 

 SD 0.22 2.98 2.22 0.25 0.23 0.29 

 MSE 0.24 1.37 1.44 0.15 0.16 0.28 

 Bias% 22.23 -3.11 10.98 -1.88 9.17 -7.87 

MSE= (�̂�(𝒔) −  𝜽𝒕𝒓𝒖𝒆)
𝟐

 +  𝑺𝑬(�̂�(𝒔)),  Bias%= 
𝟏

𝑺
∑ 𝟏𝟎𝟎 ⨯  (�̂�(𝒔)  −  𝜽𝒕𝒓𝒖𝒆)/𝜽𝒕𝒓𝒖𝒆𝑺

𝒔=𝟏  

 

 
4. Conclusion and Discussion 

Nonlinear models have wide range of applications in HIV studies, cancer research, and pharmacokinetic-

pharmacodynamic modelling [24]. In this paper, we extend the random change-point model to a more general class to 

allow for nonlinear mixed effects models for each segment. In addition, we establish a StEM algorithm-based solution 

and evaluate a convergence criterion of the Markov chain through simulations. The proposed method has conceptual 

simplicity, attributing to the EM algorithm.   

       StEM substantial improves the computation efficiency over the classic MCEM method for the problem when there is no 

existing analytic form for the E-step. Using high quality sample obtained from independent rejection sampling, we 

demonstrate that convergence is usually arrive within 2000 iterations for the size our problem. Due to the high dimension of 

the missing- data structure, a Gibbs sampler must be embedded within each StEM iteration. Even though computer power 

has been increasing at a tremendous rate, it is still wise to keep the number of simulations manageable. Hence, we shall 

continue in research in search of even more computationally efficient methods. One feasible solution is to use crude 

approximations, e.g., Metropolis sampling, at the burn-in period and gradually increase the accuracy of the approximation 

to the proper distribution. 
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