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Abstract – Species Distribution Models (SDMs) are important regression tools in the ecological sciences that can support distribution 

predictions using different environmental variables. Most of the research in the area of SDMs has assumed that regression coefficients 

in these models are fixed. However, species respond differently to different habitats depending on the habitat availability, meaning that 

regression coefficients change as functions of habitat availability, a phenomenon known as a functional response in habitat selection. The 

generalized functional response (GFR) is a varying-coefficient extension of the basic SDM framework, designed for more robust forecasts 

of species distributions in a rapidly changing world. The original GFR model formulated the varying regression coefficients using a 

polynomial function approach, which led to improvements of forecasting performance in many applications. The purpose of this paper 

is to improve the out-of-sample performance of the GFR model using a decision tree and Breiman's random forest algorithm. We compare 

the original GFR model with a decision tree and random forests using the GFR model by applying both models to a real population 

dataset on house sparrows. The results revealed a noticeable improvement in terms of out-of-sample 𝑅2 in the decision tree and the 

random forest approaches over the original GFR model. 
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1. Introduction 
       Species distributions in space is a topic of considerable importance in ecological research, particularly in terms of the 

environmental drivers of species distribution [1]. Species Distribution Models (SDMs) aim to connect animal behaviour with 

availability of habitat resources and estimate habitat usage by comparing different samples taken from different locations, 

where each sample has different environmental features [2]. Predicting habitat usage using standard regression-based SDMs 

is very challenging particularly for animals [3] because the same organisms behave differently depending on the 

environmental context they find themselves in. This non-linear phenomenon is known as a functional response in habitat 

selection [4] and can be modelled by writing the coefficients of the SDMs as a function of the availability of all habitats 

within reach of the organisms [5] [6]. The generalized functional response (GFR) approach [7] was developed as a broad 

class of varying-coefficient models, formulated originally as polynomial functions of habitat availability. The GFR model 

has been shown to display better out-of-sample predictions than the fixed coefficient SDM approaches. However, as seen 

from Eq. (4) below, the GFR of [7] is based on a global polynomial of fixed maximum order. The limitations of such models 

for learning non-linear functions from data have been widely discussed in the Machine Learning and Statistics literature (see 

e.g. [11]). The aim of the present paper is to try a more advanced and flexible modelling approach based on classification 

and regression trees (CART) and random forests (RFs), and to quantify the improvement in out-of-sample performance that 

can be achieved on a real-world application related to habitat usage in a sparrow population. 

 

2. Methods 
       The preference, ℎ(𝑥), of a certain habitat x by a given species is the ratio of the probability density of usage 𝑓𝑢(𝑥) of 

that habitat, over the availability of the same habitat, 𝑓𝑎(𝑥) [1] (also defined as a PDF over the space of environmental 

dimensions):  
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                                                                    ℎ(𝑥) =
𝑓𝑢(𝑥)

𝑓𝑎(𝑥)
                                                                                  (1) 

 

 Estimating the significance and direction of the relationship between habitat preference and environmental covariates often 

forms the goal of SDM analyses. Habitat preference is routinely represented as an exponential transformation of a predictor 

function of environmental covariates 𝑥 =  (𝑥1, . . . , 𝑥𝐼) [7]:  

 

                                                               ℎ(𝑥) = exp( ∑ 𝛽𝑖𝑥𝑖
𝐼
𝑖=1 ) (2) 

 

where the 𝛽𝑖′𝑠 are fixed coefficients of the habitat selection model. Habitat selection models that are predominantly 

formalized in this way are unable to capture species distribution when habitat availability changes. There is no biological 

reason that the proportionality assumption between use and availability in Eq. (1) should remain when the availability of 

other habitat options changes. Consequently, there is no reason to expect that the beta coefficients estimated via a regression 

approach based on Eq. (2) should be fixed when broad availability profiles change [7]. In the GFR model, Matthiopoulos et 

al. [7] allow the 𝛽𝑖′𝑠 to vary as functions of habitat availability, as follows [7]: 

 

                                                           𝛽𝑖  =  ∫ 𝛾𝑖(𝑥)𝑓𝑎(𝑥)𝑑𝑥 +  𝜀𝑖                                                                      (3)    

 

where 𝜀𝑖 is measurement noise and 𝛾𝑖(𝑥) is a flexible real function of habitat variable 𝑥. Matthiopoulos et al. use a polynomial 

function to represent the 𝛾𝑖(𝑥) for each environmental variable [7]. Their derivation results in the following relation of the 

𝛽𝑖 ’𝑠:  

 

                                    𝛽𝑖,𝑏 =  𝛾𝑖,0  + ∑ ∑  𝛿𝑖,𝑗
(𝑚) 

  𝐸[𝑋𝑗
𝑚]

𝑏
 +  𝜀𝑖,𝑏 

𝑀𝑗

𝑚=0
𝐼
𝑗=1                                                  (4) 

 

 where 𝑀𝑗 is an integer order parameter, 𝐸[𝑋𝑗
𝑚]

𝑏
  is the 𝑚𝑡ℎ moment of the covariate 𝑗 in the 𝑏𝑡ℎ sampling instance where 

each sample instance could be a sample taken in different years for the same population or sample taken from different sub-

distributions and 𝛿𝑖,𝑗
(𝑚) 

is the coefficient of 𝛾𝑖(𝑥) for the power 𝑚 of the 𝑗𝑡ℎ variable.   

Classification and regression trees (CART) are widely applied for modelling nonlinear functions learned from data. 

The idea of the CART algorithm is building a tree, which consists of nodes and leaves where each node is a variable 

that can be split into two leaves or parts [9]. The node 𝑥𝑖 and the threshold or split value ℎ , which is a value from 𝑥𝑖, is 

chosen based on some criteria. We use Breiman’s criteria in [10] to choose the best variable in each node and the best 

split of that variable. A locally optimal maximum likelihood estimator is used for the split function as follows: 

 

        (𝑗∗, ℎ∗) =  𝑎𝑟𝑔 min
𝑗∈{1,...,𝐷} 

min
ℎ∈ℎ𝑗

   𝑐𝑜𝑠𝑡({𝑥𝑖, 𝑦𝑖 ∶  𝑥𝑖𝑗  ≤ ℎ})  +  𝑐𝑜𝑠𝑡({𝑥𝑖, 𝑦𝑖 ∶  𝑥𝑖𝑗  > ℎ})                    (5) 

 

where 𝑗∗ is the best feature to split , ℎ∗ is the best split of that feature, 𝑦𝑖 is the response variable and 𝐷 is the data in each 

leaf. Misclassification rate, entropy and Gini index are common classification costs. The classification cost using Gini index 

is the probability of a randomly chosen element to be classified as the incorrect class if it was randomly classified based on 

the distribution of classes in the data 𝐷.  In a piecewise constant function case, the regression cost for a given node is the 

residual error after fitting the model in each leaf using the variables in the path from the root to that node as follows [9]: 

 

                                                  𝑐𝑜𝑠𝑡 (𝐷) = ∑ (𝑦𝑖 − �̅�𝑖𝜖𝐷  )2                                                                    (6)        

 
where �̅� is the response variable mean of 𝐷, which is the data assigned to the corresponding leaf node. We use a pruning 

scheme, whereby the minimum cross-validation cost, based on a 10-fold cross-validation scheme on the training data (but 

excluding the test data) determines the best number of terminal nodes [9]. We use the CART model in combination with the 

GFR model to quantify the out-of-sample forecasting performance. The idea is to fit the GFR model in each leaf of a training 

data by using the best feature and the best split, which are the explanatory variable and the threshold with the lowest cost, 
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and use the cost to choose the variable and the split value in each node of the tree, then do10-fold cross-validation in the 

training data to prune the tree. To measure the forecasting performance of the CART model using the GFR model, we 

predicted the target variable in a different test set.  

   Matthiopoulos et al. make use of Eq. (4) in Eq. (2) to estimate the relationship between habitat preference and 

environmental covariates using OLS by minimizing residual sum of squares, which means that the cost function of the CART 

model using the GFR model in each leaf is:  

 

                                                        𝑐𝑜𝑠𝑡𝐺𝐹𝑅(𝐷) = ∑ (𝑦𝑖 −  �̅�𝐺𝐹𝑅)2
𝑖𝜖𝐷                                                                (7) 

 

where 𝑦𝑖 is the value of the variable to be predicted in 𝐷,  which is the data assigned to the corresponding leaf node, and 

 �̅�𝐺𝐹𝑅 is prediction generated by using the new 𝛽𝑖  ’𝑠 as specified in Eq. (4). For instance, in the root node and the leaf node, 

we fit the GFR model using all explanatory variables and the possible thresholds of the variables using OLS approach in Eq. 

(7) to estimate the GFR coefficients and start the tree using the variable and split with the lowest cost. Random forests (RFs) 

are widely used for regression and classification to improve the out-of-sample generalization performance. An RF is a type 

of ensemble method containing multiple trees where each tree has a random sample of features. For each tree in RF, 63.2% 

of the observations are chosen randomly with replacement from the dataset to apply the GFR model [11]. The explanatory 

variables are also selected randomly for each tree where the number of explanatory variable in each tree in a classification 

tree is equal to the square root of the total number of explanatory variable in the dataset, √𝑝  where 𝑝 is the total number of 

the explanatory variables in the dataset, and for regressions, the number of explanatory variables in each tree is the total 

number of the variables in the dataset divided by 3, 𝑝/3 [11]. We apply the RF using the GFR model in each node to improve 

the forecasting performance for out-of-sample data. We use the method in the training data and the prediction in the test data 

to measure the performance of the models using the sparrow population dataset. We use out-of-sample 𝑅2 to measure how 

well the model predicts the response variable from the training data for new observations in the testing data. 

 

3. Materials  
       We used the same sparrow population data that was used in [8] to predict population change based on habitat availability 

using the GFR model. The set contains data for 32 colonies in the region of Glasgow, each colony containing instantaneous 

abundance data for 40 spatial cells. The sparrow response variable was analysed by a use-availability approach [8]. We use 

three main variables in the dataset: the estimated percentage of grass, bush and roof for each cell as captured by Google 

earth. To increase the ability to account for the variability in both models, an additional explanatory variable that represents 

values applying uniformly to an entire sampling instance was included in both models. The size of each colony was 

determined as the maximum number of males counted in each colony and was included in both models because larger 

colonies behave differently and use space differently. 

 

4. Results 
       Using the sparrow population dataset, we fit the GFR model using different polynomial orders from the 1st order to the 

10th. We chose the 3rd order to fit the polynomial model based on the model selection score: AIC and BIC. We applied the 

GFR, the CART and the RF models to the sparrow population dataset. The out-of-sample forecast performance was used for 

evaluation. We did 32-fold cross validation, leave-one-colony-out, to calculate the out-of-sample 𝑅2 score since the sparrow 

population data covers 32 colonies. Each time we fit the GFR or RF model to 31 colonies, we predict the habitat use of 

sparrows in each cell for the missing colony to calculate 𝑅2. To get the results from GFR model, we fit the third polynomial 

GFR model to the training data, then predict on the test data. We fit the CART model to the data by using the GFR model in 

each leaf with the best features and split in the path. The feature in the sparrow dataset are the variables grass, bush , roof, 

colony size, the moments of the variables and the mixed terms, which are the combinations of the variables with the moments. 

This follows Eq. (8) in [7]. For the RF model, we fit the GFR model in each leaf of 500 trees using the training set to predict 

the habitat use of sparrows in each cell for all the colonies. The mean out-of-sample 𝑅2 score over the 32 colonies is shown 

in Table 1. We also include the median 𝑅2 score, which is more robust to outliers than the mean. Table 1 suggests that the 

CART and the RF methods using the GFR model outperform the original GFR in [7], with a noticeable improvement for 

out-of-sample 𝑅2. 
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Table 1: Mean and median of out-of-sample performance scores of 32 colonies for GFR, CART and RF models. The GFR model was 

used in each leaf in the tree of CART and RF. 

 

Model Mean of 𝑅2’s Median of 𝑅2’s 

GFR 0.160 0.250 

CART 0.255 0.545 

RF 0.420 0.765 

      

5. Conclusion 
       The generalized functional response model is a useful way of producing out-of-sample predictions for habitat preference 

by species. The GFR model uses a polynomial function to model the habitat selection function. The 𝑚𝑡ℎ moment of the 

habitat covariate in a certain sampling instance is used to represent the habitat selection coefficients 𝛽’s after allowing the  

𝛽𝑖′𝑠 to vary as functions of habitat availability instead of being fixed. The GFR model is a non-linear model because of the 

many interactions it has and we hypothesised that this level of non-linearity will be dealt with by the CART approach. A 

decision tree (CART) is an algorithm used to predict values in a target variable based on decision rules obtained from training 

data. We used the CART model to fit the GFR model to each leaf. The GFR and CART models use the OLS approach to 

estimate the β’s. The RF model is an ensemble approach used for regression and classification which contains a multitude of 

trees to aggregate the results obtained from each tree. RFs have been shown to improve the out-of-sample performance over 

single trees [9]. We have compared the forecasting performance of the GFR, CART and RF models using the out-of-sample 

performance score. A real-world application was used to measure the performance of the models. We used the sparrow 

population dataset that was used in [8] and applied the GFR model. We used leave-one-colony-out cross validation to make 

predictions for each colony in the GFR model. For RF, we applied the GFR model in each node of 500 trees. Based on the 

findings in Table 1, the CART and the RF models using the GFR model are more effective at making predictions than the 

original GFR based on the mean and the median of the out-of-sample performance scores for each colony. 
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