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Abstract - In the era of big data, there is an increasing demand for split-and-conquer learning of finite mixture models. Recent work [1] 

proposes several split-and-conquer approaches for learning finite Gaussian mixtures and they are found to be both statistically and 

computationally efficient when the order of the mixture is correctly specified. Due to the nature of mixture models, correctly specifying 

the order of mixture on local machines can be an unrealistic assumption. In this paper, we evaluate the performance of several split-and-

conquer learning approaches, both when the order is correct and when it is over-specified on the local machines, based on simulations. 

We find that there is a trade-off between robustness and computational efficiency: the computationally intensive approach is robust 

against over-specification, while the two computationally friendly approaches have compromised statistical performance when the order 

is over-specified. The results suggest that the information in the data about the true distribution is not lost in the split step of the learning, 

and aggregation strategies must be developed in a computationally and statistically efficient way.  
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1. Introduction 
        The split-and-conquer approach is an effective way of learning statistical models when the dataset is large or when the 

dataset is composed of many subsets that are stored on different local machines. A split-and-conquer approach consists of 

two steps: (i) local inference: standard inference is carried out on local machines; (ii) aggregation: the local results are 

transmitted to a central machine to be aggregated. Without relying on data sharing, such approaches have a built-in advantage 

in privacy consideration. The split-and-conquer approach has been successfully applied to learn generalized linear models 

[1], the kernel ridge regression model [2], and the local average regression models [3]. 

       [1] investigates this approach under the finite Gaussian mixture model. Currently, they focus on the situation where the 

order of the mixture model is known and correctly specified. Every local machine learns a finite Gaussian mixture with the 

same and correct order. While the machine learning community has devoted most energy to this special case, it is of interest 

and great importance to develop the split-and-conquer approaches when the order of the mixture is potentially over-specified.  

In this paper, we empirically evaluate the performance of a number of split-and-conquer approaches under this case. 

Our study reveals that there is a trade-off between robustness and computationally efficiency: the computationally intensive 

approach is robust against over-specification, while the two computationally friendly approaches have compromised 

statistical performance when the order is over-specified. We believe that the information in the data about the true model is 

not lost in the split step of the learning. Hence, there is a good promise to develop computationally friendly aggregation 

strategies to aggregate local estimates in a statistically efficient way. Full exploration of such remedies is left as future work. 

The rest of this paper is organized as follows: we briefly introduce the split-and-conquer learning of Gaussian mixtures 

in Section 2. In Section 3, several split-and-conquer approaches are introduced. We study their performance under two finite 

Gaussian mixtures of order 3 in 1 and 2 dimensional spaces respectively. The preliminary conclusions based on the empirical 

study is given in Section 4. 

 

2. Distributed Learning of Gaussian Mixtures 
       Let ℱ = {𝑓(⋅ |𝜃):  𝜃 ∈ Θ} be a parametric family of density functions with respect to some σ-finite measure, and G =
∑ 𝑤k{𝜃k

K
k=1 } be a discrete probability measure on Θ that assigns probability 𝑤𝑘 to subpopulation parameter 𝜃𝑘, for some 

integer 𝐾 > 0. The density function of a finite mixture on ℱ is defined to be 𝑓(𝑥|G) = ∫ 𝑓(𝑥|𝜃)dG(𝜃) = ∑ 𝑤k𝑓(𝑥|𝜃k)K
k=1 . 
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In this context, the measure 𝐺 is called the mixing distribution, and the entries of 𝐰 = (𝑤1, 𝑤2, ⋯ , 𝑤𝐾)τ are called the mixing 

weights. We denote the space of mixing distributions with order up to 𝐾 by 

𝔾𝐾 = {G = ∑ 𝑤𝑘{𝜃𝑘

𝐾

𝑘=1

}|𝜃𝑘 ∈ Θ, 𝑤𝑘 ≥ 0, ∑ 𝑤𝑘

𝐾

𝑘=1

= 1}. 

       A mixture of (exact) order 𝐾 has its mixing distribution in 𝔾𝐾 − 𝔾𝐾−1. When ℱ is the family of Gaussian distributions 

such that 

𝑓(𝒙|𝜃) = ϕ(𝒙|𝛍, 𝚺) = |2π𝚺|−1/2exp {−
1

2
(𝒙 − 𝛍)τ𝚺−1(𝒙 − 𝛍)}, 

{𝑓(𝑥|G)|𝐺~𝔾𝐾} is a finite Gaussian mixture model of order 𝐾. In this model, the subpopulation parameter space becomes 

Θ = ℝ𝑑 × 𝔖𝑑  where 𝔖𝑑  is the space of symmetric and nonnegative definite matrices of dimension 𝑑 . We use 𝜙(𝒙|G) 

instead of 𝑓(𝒙|G) for its density function. 

       Let 𝒳 = {𝒙1, 𝒙2, … , 𝒙𝑁} be a set of independent and identically distributed (IID) observations from a Gaussian mixture 

𝜙(𝒙|𝐺) of order 𝐾. Suppose that 𝒳 is partitioned into 𝑀 subsets 𝒳1, 𝒳2, … , 𝒳𝑀 completely at random and they are stored 

on 𝑀 different local machines. Denote by 𝑁𝑚 the sample size and 𝜆𝑚 = 𝑁𝑚/𝑁 the proportion of samples stored on the 𝑚th 

machine. The local inference is performed by employing some learning strategy on the local machines and 𝐺𝑚 of order 𝐾 is 

an estimate of G based on subset 𝒳𝑚, for m = 1, … , M. The task of aggregation is to form an aggregated estimate of G 

through local estimates. One straightforward aggregated estimate is G̅ = ∑ 𝜆𝑚𝐺̂𝑚 M
m=1 . This is arguably a good estimate of 

the true mixing distribution in general. However, its induced mixture has inflated order even when the orders of all local 

estimates are correctly specified. 

       In view of the shortcoming of 𝐺̅, we need a more deliberate aggregation step. One strategy is to reduce the order of 

𝜙(𝒙|𝐺̅) from 𝑀𝐾 to 𝐾 with minimum distortion. The problem of approximating a high order Gaussian mixture by one with 

a lower order is called Gaussian Mixture Reduction (GMR), see [5]–[9]. In particular, [1] proposes a method specifically 

targeting the GMR problem in learning Gaussian finite mixtures.  

       Let 𝐷(⋅ | ⋅) be a divergence between two mixtures. Given a choice of 𝐷(⋅ | ⋅), it is natural to search for a mixture with 

pre-designated order through 

𝐺̅𝑅 = argminG∈𝔾K
D(𝜙(𝑥|G̅)|𝜙(𝑥|G)). (1) 

       This definition provides a principle but lacks specifications for the divergence. Divergences that facilitate both statistical 

and computational efficiency should be considered. The following definition of [1] is helpful toward this goal. 

 

       Definition 2.1 (Transportation Divergence between Mixtures) Denote by 𝐺 = ∑ 𝑤𝑖{𝜃𝑖
𝐼
𝑖=1 } and 𝐺̃ = ∑ 𝑤̃𝑗{𝜃̃𝑗

𝐽
𝑗=1 } two 

discrete measures on space 𝛩. Let 𝒘 and 𝒘̃ be their weight vectors, 𝑓𝑖(𝑥) = 𝑓(𝑥|𝜃𝑖), 𝑓𝑗(𝑥) = 𝑓(𝑥|𝜃̃𝑗), and 𝑐(⋅,⋅): ℱ × ℱ →

ℝ+ be a non-negative semi-continuous function. Let  

𝛱(𝒘, 𝒘̃) = {𝝅 ∈ ℝ+
𝐼×𝐽

: 𝝅𝕝𝐽 = 𝒘, 𝝅𝜏𝕝𝐼 = 𝒘̃}. 
Then the transportation divergence between two mixtures is given by 

𝒯𝑐(𝑓(⋅ |𝐺), 𝑓(⋅ | 𝐺̃)) = inf {∑ π𝑖𝑗𝑐(𝑓𝑖, 𝑓𝑗)
𝑖,𝑗

 |𝝅 ∈ Π(𝐰, 𝐰̃)}. (2) 

       Unlike some divergence measures applied directly on two mixtures, the transportation divergence is computed through 

divergences between subpopulations. This choice greatly reduces the computational complexity and enhances the 

performance of the aggregated estimator. In particular, [1] develops an effective MM algorithm and recommends the KL 

divergence for the cost function 𝑐(⋅,⋅). They further show that the resulting aggregated estimator is asymptotically consistent 

with a convergence rate N−1/2 when 𝐾 is correctly specified. They also show that their algorithm for computing (2) always 

converges under mild conditions on the cost function. The implementation of this line of split-and-conquer approach does 

not rely on correctly specifying the order 𝐾. It is clear that the statistical performance of the aggregated estimator heavily 

depends on the knowledge of 𝐾. If 𝐾 is under-specified, the estimators will be inconsistent. If the order is over-specified, it 

is interesting to know whether we can still obtain an aggregated estimator with adequate statistical performance. We aim to 

shed some light on this aspect of the approach through simulation study. We leave the potential remedies and other statistical 

issues as future work. 
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3. Simulations 
       We simulate data from a mixture of order 𝐾 and have the simulated data partitioned into 𝑀 subsets. On each local 

machine, we learn the mixture model based on the allocated subset under four scenarios. The first three scenarios are i) the 

order of the mixture is correctly specified; ii) the order of the mixture on the local machine is specified to be 𝐾 + 1; and iii) 
the order of the mixture on the local machine is specified to be 𝐾 + 2. In the fourth scenario, we learn a mixture of order 

𝐾 + 𝑚 on the 𝑚th local machine. In other words, the order of the mixture model varies with the local machines, and we refer 

to this scenario as mixed order hereafter. In the aggregation step, we combine the local estimates to form ϕ(𝒙|𝐺̅)  and reduce 

its order to the truth. 
       We study the performance of the GMR estimators with various choices of the divergence 𝐷(⋅ | ⋅) in (1). The divergences 

considered in the experiment are: 

1. ISE. The squared 𝐿2 distance between two Gaussians, that is 

DISE (𝜙(⋅ |G)|𝜙(⋅ |G̃)) = ‖𝜙(⋅ |G) − 𝜙(⋅ |G̃)‖
2

2
= ∫{ 𝜙(𝑥|G) − 𝜙(𝑥|G̃)}2𝑑𝑥. 

2. TD-KL. The transportation divergence with the cost function being the KL divergence between two Gaussians in 

(2). This is the estimator considered in [1]. 

3. TD-ISE. The transportation divergence with the cost function being the squared 𝐿2 distance between two Gaussians, 

which is c(fi, 𝑓𝑗) = ‖fi − 𝑓𝑗‖
2

2
 in (2). 

       We also include a KL-averaging (KLA) approach of [10] in the simulation study. Unlike the above methods, KLA 

generates a sample of size 1000 from each locally learned 𝑓(𝑥|𝐺𝑚) on a central machine. A maximum likelihood estimator 

(MLE) based on the pooled sample serves as the final aggregation result. Note that this approach does not require transferring 

the original data stored on local machines. 

       It can be shown that 

DISE (𝜙(⋅ |G)|𝜙(⋅ |G̃)) = 𝒘τ𝑆𝐺𝐺𝒘 − 2𝒘τ𝑆𝐺𝐺̃𝒘̃ + 𝒘τ̃𝑆𝐺̃𝐺̃𝒘̃ 

where SGG = {𝜙(𝛍i|𝛍j, 𝚺i + 𝚺j)}, 𝑆𝐺𝐺̃ = {𝜙(𝛍𝑖|𝝁̃𝑗, 𝚺𝑖 + 𝚺̃𝑗)}, and SG̃G̃ = {𝜙(𝝁̃𝑖|𝝁̃𝑗 , 𝚺̃𝑖 + 𝚺̃𝑗)} are three matrices of shape 

I × I, 𝐼 × 𝐽, and 𝐽 × 𝐽 respectively. With these expressions, computing DISE (𝜙(⋅ |G)|𝜙(⋅ |G̃)) is an easy numerical task, but 

the minimization problem is harder to tackle. In our simulation, we use the BFGS algorithm [11] for optimization and the 

outcome may only be a local minimum. 

       At each local machine, we use the penalized MLE in [12] with the size of the penalty set to 𝑁𝑚
−1/2. When computing 

the KLA estimator on the central machine, we choose the penalty size by the same rule, which is (1000𝑀)−1/2. The EM-

algorithm is used to compute pMLE and its convergence is claimed when the increment in the penalized log-likelihood 

function standardized by the total sample size is less than 10−6. We use the kmeans algorithm to initialize the MM algorithm 

and we declare the convergence of the MM algorithm for the GMR estimator when the change in the objective function is 

less than 10−6. 

       We generate data from the following four mixtures in our experiment. The first two are chosen as Gaussian mixtures of 

order 𝐾 = 3 and dimension 𝑑 = 1. Their density functions are given by 

I. 𝜙(𝑥|G) = 1/3𝜙(𝑥|−3,1) + 1/3𝜙(𝑥|0,1) + 1/3𝜙(𝑥|3,1); 

II. 𝜙(𝑥|G) = 0.1𝜙(𝑥|−2,1) + 0.3𝜙(𝑥|0,1) + 0.6𝜙(𝑥|3,1). 

       The next two are chosen as Gaussian mixtures of order 𝐾 = 3 and dimension 𝑑 = 2. To introduce the density function 

of these two mixtures, we first denote μ(r, θ) = r(cos θ , sin θ)τ and 

Σ(𝜆1, 𝜆2, 𝜃) = (
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

) (
𝜆1 0
0 𝜆2

) (
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)
𝜏

 

III. 𝜙(𝒙|G) = 0.15𝜙(𝒙|μ(2,3π/2), Σ(1,5,0)) + 0.35𝜙(𝒙|μ(3,0), Σ(1,5, π/4)) + 0.5𝜙(𝒙|μ(2, π/2), Σ(1,5, π)); 

IV. 𝜙(𝒙|G) = 0.15𝜙(𝒙|μ(2,3π/2), Σ(1,1,0)) + 0.35𝜙(𝒙|μ(0,0), Σ(1,5, π/4)) + 0.5𝜙(𝒙|μ(2, π/2), Σ(1,5, π)). 

       We generate samples of sizes N = 219 or 𝑁 = 221 respectively from each of the mixtures given above. Each sample is 

then split into 𝑀 = 4 or 𝑀 = 8 subsets completely at random and they are regarded as stored on 𝑀 = 4 or 𝑀 = 8 local 

machines. With these two choices of sample sizes and two choices of the number of local machines, we obtain 4 
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combinations. The four split-and-conquer methods discussed earlier are applied to obtain the aggregated estimates. We assess 

the performances of these 4 methods based on 𝑅 = 100 repetitions with the following metrics. 

a. ISE. We compute the ISE between the estimated mixture and the true mixture. 

b. Adjusted Rand Index (ARI). The finite mixture model is often used for model-based clustering. We may divide 

the observations into 𝐾 clusters based on the true mixture or the learned mixture. An ARI value proposed by [13] 

measures the similarity of two clustering outcomes.  

c. Computational time. One important consideration of a split-and-conquer approach is the amount of computation. 

A conceptual optimal approach is not useful if it cannot be solved within a reasonable amount of time. 

 
3.1. Simulation Results under Distributions I and II 
       We summarize the results in Figure 1 when the split-and-conquer methods are applied to data generated from 

distributions I and II. Note the plots in the first and second columns are results under distributions I and II respectively. We 

then divide each plot into 4 panels labelled by 𝑀 = 4 or 𝑀 = 8 on the top, and 𝑁 = 219 or 𝑁 = 221 on the right margin with 

an obvious interpretation. Within each panel are boxplots of one of the performance measures for 4 methods. The lower ISE 

and higher ARI indicate better performance.  

       According to Figure 1, when the true order 𝐾 = 3 is specified at local machines, ISE, TD-ISE, and TD-KL have similar 

and good performances. When the number of machines increases or the sample size increases, the boxplots get shorter, 

indicating lower variations. In comparison, the ISE of KLA approach is hundreds of times larger. It is therefore less efficient. 

       When the order on local machines is over-specified with 𝐾 = 4, the ISE method is negatively but only mildly affected 

in terms of both ISE and ARI. The TD-ISE and TD-KL become much worse and less stable. The KLA remains non-

competitive. When the order is over-specified at 𝐾 = 5, the ISE remains well behaved. The computationally favoured TD-

ISE and TD-KL become statistically ineffective. Under the case of mixed orders, the ISE is still well behaved and other 

methods remain non-competitive. 

 
3.2. Simulation Results under Distributions III and IV 

       The simulation results under distributions III and IV are summarized in Figure 2. The plots in Figure 2 are arranged the 

same way as before. The plots in the first and second columns are results under distributions IIII and IV respectively. 

       Most statistical methods have deteriorated performance under multi-dimensional data. It turns out that the performance 

of the ISE approach remains reasonable in all cases under distribution III. When the order is slightly over-specified with 

𝐾 = 4, the performances of TD-ISE and TD-KL also remain reasonable. When 𝐾 = 5, these two approaches become 

unstable, just like their performance under distributions I and II. Under the case of mixed orders, the ISE approach is still 

well behaved. The other methods remain non-competitive. 

       Unlike distributions I-III, the subpopulations in distribution IV are not well separated. We anticipate that all approaches 

do not perform too well. Indeed, ISE, TD-ISE, and TD-KL are all unstable even when the order is correctly specified with 

𝐾 = 3. We are surprised, however, that they recover from this failure when the order is over-specified at 𝐾 = 4. The ISE 

approach has a comparable low ISE value in this case to the ISE value under distribution III, where the subpopulations are 

well separated. 

 
3.3. Summary 

       Our simulation experiment only covers a small range of scenarios. It is dangerous to generalize what we have observed. 

It might be safe to say, the reasonable performance of the ISE approach in all situations included indicates the local estimates 

effectively summarize the information contained in the data. The over-specification of the order may not always be 

devastating. Based on these results, one may decide to always use the ISE approach as it is least affected by over-

specification. However, the drawback of this approach is its computational complexity. It becomes infeasible when either 𝑀 

or the dimension 𝑑 becomes larger. 
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Fig. 1: Performances of four split-and-conquer approaches for learning 1-dimensional 3-component mixtures. 

             

4. Conclusion 
       In this paper, we investigate the potential adverse effect of over-specifying the order of the finite mixture model at local 

machines in split-and-conquer approaches. The scale of our experiment is limited and does not cover sufficient grounds. We 

only simulate data from mixtures in low dimensional space and with relative low order. Surprisingly, the simple ISE approach 

has very good statistical performance and it is robust to order over-specification in general. The straightforward 
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implementations of TD-ISE and TD-KL do not perform as well under order misspecification. One is reminded that the 

motivation behind the TD-ISE and TD-KL is their computational efficacy, which is not shared by ISE. The superior 

performance of ISE in terms of the robustness against over-specification indicates the statistical efficacy is possible. With 

some effort, we believe robust as well as computationally efficient split-and-conquer approaches can be found. We aim to 

pursue this topic in the future. 

     
Fig. 2: Performances of four split-and-conquer approaches for learning 2-dimensional 3-component mixtures. 
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