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Abstract - The concept of statistical evidence has proven to be somewhat elusive in the development of the discipline of 

Statistics. Still there is a conviction that appropriately collected data contains evidence concerning the answers to questions 

of scientific interest. We discuss some of the attempts at making the concept of evidence precise and, in particular, present 

an approach based upon measuring how beliefs change from a priori to a posteriori. Of necessity this is Bayesian in nature 

as a proper prior is required that reflects beliefs about where the truth lies before the data is observed.  Bayesian inference is 

often criticized for its subjective nature. It is possible, however, to deal with this subjectivity in a scientifically sound manner. 

In part, this is done by assessing and controlling the bias the prior and model induce into inferences and this depends 

intrinsically on being clear about statistical evidence. In addition, the model and the prior are falsifiable through model 

checking and checking for prior-data conflict. Both the assessment of bias and the falsification steps are essentially 

frequentist in nature so this provides a degree of unity between sometimes conflicting philosophies. This approach to 

statistical reasoning can be seen as dealing with the inevitable subjectivity required in the choice of ingredients to an analysis 

so that a statistical analysis can approach the goal of objectivity that is central to scientific work. 
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1. Introduction 
The concept of statistical evidence is central to the subject of statistics but there is a lack of clarity on what it is and this 

causes controversy. As an example of this, consider the current discussions concerning p-values. In fact, do p-values measure 

statistical evidence? It seems impossible to answer such a question when we are unclear about what statistical evidence is, 

see, however, Example 2.  

   The centrality of the concept of statistical evidence has long been recognized without a generally accepted answer being 

presented. Alan Birnbaum's work in the 1960's, as in [1], was concerned with trying to characterize the concept via 

equivalence relations and has generated quite a bit of controversy ever since. Also, Royall’s book on likelihood methods [2] 

has this central concern as does the relative belief approach discussed in [3], where the topic is approached from a Bayesian 

perspective. These references are closest to the spirit of this talk but there are many books and papers where statistical 

evidence is the primary concern, see [4]-[8]. Also, of some considerable importance are the many treatments and discussions 

in the philosophy of science literature where it is known as confirmation theory, see [9]. 

It is reasonable to ask what the ultimate goal is in being as precise as possible about statistical evidence. As expressed 

here, this is somewhat ambitious as it is to develop a theory of statistical reasoning that works, in that it provides answers to 

statistical problems, is logically sound, in other words free of paradoxes, and is scientifically sound, namely, conforms to the 

values that are recognized as representing good science such as objectivity. Furthermore, we want that theory to be based on 

a clear characterization of statistical evidence.  

This is necessarily considerably idealized and there is no pretention that such a theory will fully satisfy the needs of the 

working statistician who encounters all kinds of messy problems that require considerable flexibility. Yet, without a central 

core to the subject, and that is what such a theory aims to provide, doubts exist concerning the validity of any statistical 

methodology.  Also, our concern is with a "theory of statistical reasoning" as opposed to "theory of statistical inference". By 

this we mean that there is more required for a successful theory than just stating the rules of inference. 
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This paper is concerned with some developments related to [3]. This is outlined here and it is shown how this can 

resolve certain difficulties. One outcome is to find complementary roles for Bayes, for inference, and for frequentism, 

for design and assessing the merits/reliability of a study. This points to a possible resolution between what are at times 

quite different approaches to statistical reasoning. 

 
2.   The Problem 

Consider then a scientific context where there are questions concerning an object of interest 𝛹 and data 𝑥 has been 

collected (assumed properly) believed to contain evidence concerning the answers to one or both of the following 

problems. 

 

E estimation: Provide an estimate 𝜓(𝑥) of 𝛹 together with an assessment of its accuracy based on the evidence. 

H hypothesis assessment:  Quote the evidence in favour of or against some specified value 𝜓0 of 𝛹 together with  

an assessment of the strength of the evidence. 

 

It is to be noted here that, in considering H, it is stated that it is desirable that evidence in favour of 𝜓0 being true can  

be stated as well as evidence against.  How then are we to reason from the data to answer E and/or H?  

 

3.   The Ingredients 
So far all we have available to answer this question is the data 𝑥. Perhaps it would be best to just use the data alone, 

but it seems more is needed and these are of necessity choices made by someone and, in particular, often by the 

statistician. It is then reasonable to ask what characteristics do we want these ingredients to have? The following seem 

necessary, but there may well be others. 

 

I1 Minimal: The minimal ingredients needed to get a valid characterization/measure of statistical evidence. 

I2 Bias: An assessment can be made to determine to what extent the chosen ingredients produce foregone conclusions  

to E or H. 

I3 Falsifiable: Any chosen ingredient specified can be assessed against the (objective) data to see if it is contradicted. 

 

Certainly, objectivity is the ideal goal in scientific endeavours but subjective choices need to be made when carrying 

out a statistical analysis. So I2 and I3 are concerned with assessing and controlling the effects of subjectivity as much as 

possible. Also, we will always assume here that the data 𝑥, if collected properly, is objective. 

For the developments here the following two subjective ingredients will be used.  

 

Model: {𝑓ɵ: ɵ ͼ 𝛩} a collection of conditional probability distributions for 𝑥 given ɵ such that the object of interest  

𝜓 =  𝛹(ɵ) ͼ 𝛹 (𝛹 also denotes the set of possible values) is specified by the true distribution that gave rise to 𝑥. 

Prior: 𝜋 a probability distribution on 𝛩. 

 

Discussion of I2 is deferred until later in the paper. Both ingredients, however, satisfy I3 via model checking for the 

model and via checking for prior-data conflict for the prior, see [10]. In the case of the prior, falsification means that an 

indication has been found that the true value lies in the tails of the prior. Methodology for modifying a prior when such 

a conflict occurs is discussed in [11]. There is also another component to our discussion that is not really a choice, as it 

is largely dictated by the measurement process that produced the data. 

  

Meaningful Difference 𝛿: the difference that matters so that 𝑑𝛹(𝜓1, 𝜓2) ≤  𝛿, for some distance measure 𝑑𝛹, means  

that 𝜓1 and 𝜓2 are, for practical purposes, indistinguishable.  

 

The need for specifying 𝛿 has long been recognized as can be seen from [12], a reference from 1919, and it plays a role  

here.  

The model and prior specify a joint prior probability measure 𝑃 for 𝜔 =  (ɵ, 𝑥) with joint density given by  

𝜋(ɵ )𝑓ɵ(𝑥). The goal now is use 𝑃 together with 𝑥 to answer E and H. 
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4.   The Rules of Statistical Inference 
The following three rules or principles of statistical inference are used here with the first two being the most important. 

These are stated for a probability model (𝛺, 𝐹, 𝑃) where it is desired to infer about the occurrence of the event 𝐴 ∈ 𝐹 after 

observing that 𝐶 ∈ 𝐹 has occurred and it is assumed for now that 𝑃(𝐶) > 0. 

 

R1 Principle of conditional probability: Belief about the truth of A, as expressed 𝑃(𝐴), is replaced by 𝑃(𝐴|𝐶).  

R2 Principle of evidence: The observation of 𝐶 is evidence in favor of 𝐴 when 𝑃(𝐴|𝐶) > 𝑃(𝐴), is evidence against 𝐴 when 

𝑃(𝐴|𝐶) < 𝑃(𝐴) and is evidence neither for nor against 𝐴 when 𝑃(𝐴|𝐶)  =  𝑃(𝐴).  

R3 Principle of relative belief: When comparisons are made the evidence is ordered by the relative belief ratio 𝑅𝐵(𝐴|𝐶) =
𝑃(𝐴|𝐶)/𝑃(𝐴) . 
 

The principle of evidence has a long history in the philosophy of science although it is not always called that. Consider 

the following quote from Popper [13] found in Appendix ix. "If we are asked to give a criterion of the fact that the evidence 

𝑦 supports or corroborates a statement 𝑥, the most obvious reply is: that 𝑦 increases the probability of 𝑥." 

The relative belief ratio in R3 can be replaced by any valid measure of statistical evidence. By valid we mean that there 

is a cut-off such that values of the measure with respect to the cut-off characterize evidence for or against, as the value 1 

does for the relative belief ratio, via the principle of evidence. For example, the Bayes factor is such a measure and with the 

same cut-off. It can be argued, however, that the relative belief ratio has the nicest properties and is the easiest to use. 

One natural question concerns what to do in the continuous case and our answer is to use limits. In general, the relative 

belief ratio at the value 𝜓 =  𝛹(ө) is defined as follows, where the events 𝐴𝜀 converge nicely to the point 𝜓 as ͼ → 0, 

𝑅𝐵𝛹(𝜓 | 𝑥) = lim
ͼ

𝑃(𝐴𝜖  | 𝑥)

𝑃(𝐴𝜖)
=

𝜋𝛹(𝜓 | 𝑥)

𝜋𝛹(𝜓)
 

with 𝜋𝛹(⋅ |𝑥) the posterior density and 𝜋𝛹 the prior density of 𝛹. This limit exists whenever the prior density is positive and 

continuous at 𝜓. There is a relationship between the relative belief ratio and the Bayes factor, see [3], but there is no need 

for "spike" priors and, moreover, in the continuous case, when a Bayes factor is defined via the same kind of limit, this limit 

is given by the limiting relative belief ratio.  

 

   5.   Inferences 
The application of the rules of inference to the ingredients comprised of the model, prior and data leads to answers to E 

and H.  Since it is simpler, consider first problem H.  

 

H: Assess 𝐻0: 𝛹(𝜃) = 𝜓0 via 𝑅𝐵𝛹(𝜓0 | 𝑥), so evidence in favour of (against) 𝐻0 is found if > (<)1. 

 

 It is still necessary to indicate how strong this evidence is, one way or the other. There is no universal scale on which 

evidence is measured, so 𝑅𝐵𝛹(𝜓0 | 𝑥) needs to be calibrated and that is context dependent. For this we use the ordering of 

𝜓 ∈ 𝛹  given by R3, where 𝜓1 is not preferred to 𝜓2 whenever 𝑅𝐵𝛹(𝜓1 | 𝑥) ≤ 𝑅𝐵𝛹(𝜓2 | 𝑥). Then, with 𝛱𝛹(⋅ |𝑥) denoting 

the posterior probability measure of Ψ, we call the posterior probability 𝛱𝛹(𝑅𝐵𝛹(𝜓 | 𝑥) ≤ 𝑅𝐵𝛹(𝜓0 | 𝑥) | 𝑥) the strength of 

the evidence. When there is evidence in favour, and this is a big probability, then there is little belief that the true value has 

an even more evidence in its favour, so there is strong evidence in favour of 𝐻0. When there is evidence against, and this is 

a small probability, then there is strong evidence against 𝐻0 via the same reasoning. There is no reason why the strength of 

the evidence needs to be measured by one number, however, and sometimes this needs to be augmented by additional 

posterior probabilities. Notice that the basic inference only relies on R1 and R2 while the measure of strength requires all 

three principles. 

For E it is necessary to invoke all three principles of inference for the basic inference although the measure of accuracy 

only requires the first two.  

 

E: Based on the ordering, estimate 𝜓 by 𝜓(𝑥) = argsup 𝑅𝐵𝛹(𝜓 | 𝑥). 
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The error in the estimate is then assessed via the "size" of the plausible region given by 𝑃𝑙𝛹(𝑥) = {𝜓: 𝑅𝐵𝛹(𝜓 | 𝑥) > 1},  the 

set of values having evidence in favour of being the true value, and its posterior content. Note that 𝑃𝑙𝛹(𝑥) only depends on 

𝑹2, which implies that all valid estimates have the same accuracy. As such, alternative choices could be made that involve, 

for example, some smoothing as long as the principle being used always produced values in 𝑃𝑙𝛹(𝑥). It is also possible to 

quote a 𝛾-credible region 𝐶𝛹,𝛾(𝑥) = {𝜓: 𝑅𝐵𝛹(𝜓 | 𝑥) > 𝑘𝛾} for accuracy assessment, provided 𝛾 ≤ 𝛱𝛹(𝑃𝑙𝛹(𝑥) | 𝑥) as 

otherwise the region would include values for which there is evidence against them being the true value. This establishes a 

close link with likelihood methods and frequentism as, for the full model parameter the estimate 𝜃(𝑥) is the MLE and 𝑃𝑙𝛹(𝑥) 

is a particular likelihood region. The relative belief approach has a number of good properties. For example, since 𝑅𝐵𝛹 is 

invariant under reparameterizations, all inferences are invariant and possess many other optimal properties, see [3]. 

        Consider now a well-known example that has presented difficulties for the frequentist approach.  

 

Example 1.  Fieller’s problem. 

This problem has an extensive literature where [14]-[19] are notable examples. For this we have i.i.d. samples 𝑥 =
(𝑥1, … , 𝑥𝑚)~𝑁(𝜇, 𝜎0

2) independent of 𝑦 = (𝑦1, … , 𝑦𝑛)~𝑁(𝜈, 𝜎0
2) where (𝜇, 𝜈) ∈ 𝑅2 is unknown but the common 

variance is known. This latter assumption can be weakened to an unknown variance but this doesn’t change the basic 

nature of the problem where a 0.95-confidence interval is required for the ratio of means 𝜓 = 𝛹(𝜇, 𝜈) = 𝜇/𝜈.   A 

common approach is to use the following pivotal to obtain the region, 

(𝑥̅ − 𝑦̅𝜓)/𝜎0√
1

𝑚
+

𝜓2

𝑛
∼ 𝑁(0,1). 

The issue that arises is that sometimes the absurd interval given by all of  𝑅1 is obtained. A confidence interval is  

called absurd if can be equal to the whole relevant parameter space or the null set with positive probability for some ө values.  

For the context being considered here there are also the priors given by 𝜇 ∼ 𝑁(𝜇0, 𝜏10
2 ), independent of 𝜈 ∼

𝑁(𝜈0, 𝜏20
2 ) where, in practice, an algorithm is easily specified to elicit the hyperparameters based upon what is known 

about the measurement process. A natural question then is whether or not a plausible region can be absurd. Putting 𝐶 =
{𝑥: 𝑅𝐵𝛹(𝜓 | 𝑥) = 1 a. e. 𝛱𝛹} and 𝑀 equal to the prior probability measure of the data 𝑥, the following general result can 

be proved, see [20]. Therefore, a plausible region is effectively never absurd.  

 

Theorem The plausible region for 𝜓 = 𝛹(𝜃) (i) never satisfies 𝑃𝑙𝛹(𝑥) = 𝛹 and (ii) satisfies 𝑃𝑙(𝑥) = 𝜙 with prior  

probability 0 when 𝑀(𝐶) = 0. 
 

It is still possible for the plausible region to equal an exclusive region, namely, 𝑃𝑙(𝑥) = (−∞, 𝑎(𝑥)) ∪ (𝑏(𝑥), ∞) 

but these seem logically necessary. For example, if a 0.95-confidence interval for 𝜇 contains 0, this implies an exclusive 

confidence region for 1/𝜇 and that seems correct. For Fieller’s problem, 𝑅𝐵𝛹(𝜓 | 𝑥, 𝑦) can be obtained in closed form 

and it is easy to obtain 𝑃𝑙(𝑥) and 𝛱𝛹(𝑃𝑙(𝑥) | 𝑥) but this doesn’t answer the confidence question which we will return 

to shortly.  

As a specific numerical example, suppose 𝜇 = 20, 𝜈 = 10, 𝜎0
2 = 1 so 𝜓 = 20/10 = 2 and 𝛿 = 0.1. With 𝑚 = 𝑛 =

10 the data was generated from this model yielding mss equal to (𝑥̅, 𝑦̅) = ( 20.188,10.699). The 0.95-confidence region 

based upon the pivotal equals (1.770,2.016). Suppose now that the elicitation of the priors led to (𝜇0, 𝜏10) =
(17.5,2.912), (𝜈0, 𝜏20) = (8.75,2.328). This results in the estimate 𝜓(𝑥) = 1.89 with plausible region 𝑃𝑙𝛹(𝑥, 𝑦) =
(1.76,2.03). If our concern is with the hypothesis that the true value of 𝜓 is 2, then remembering the difference that 

matters 𝛿, the hypothesis  𝐻0: 𝛹(𝜃) ∈ (2 − 𝛿, 2 + 𝛿) is assessed, which has 𝑅𝐵𝛹(2 | 𝑥, 𝑦) = 3.44 with strength equal 

to 0.44. So, there is evidence in favour, but only of middling strength at best. Figure 1 is a plot of the prior and posterior 

densities of ψ on the left and of the relative belief ratio on the right. The prior has a very long tail in this case but the 

posterior concentrates quite significantly.  
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Fig. 1: Plots of the prior (- -) and posterior (-) densities of ψ on the left and of the relative belief ratio on the right in Example 1. 

 

   6.   Bias 
Bias calculations are considered necessary as part of assessing the quality of a study. For example, would you accept 

the results of a statistical analysis that reported evidence against (in favour of) 𝐻0: 𝛹(𝜃) = 𝜓0 if the prior probability of 

obtaining such evidence was ≈ 1 when 𝐻0 is true (false)? This is what we mean by bias. As part of assessing bias, let 𝑀(⋅
 | 𝜓) denote the prior predictive probability measure for the data 𝑥 given that 𝛹(𝜃) = 𝜓.  

Consider first measuring bias for problem H, namely, for the hypothesis 𝐻0: 𝛹(𝜃) = 𝜓0.  

 

H: bias against =  𝑀(𝑅𝐵𝛹(𝜓0 | 𝑋) ≤ 1 | 𝜓0),  bias in favour = sup
𝜓:𝑑𝛹(𝜓,𝜓0)≥𝛿

𝑀(𝑅𝐵𝛹(𝜓0 | 𝑋) ≥ 1 | 𝜓)  

 

So, the bias against is the prior probability of not getting evidence in favour of 𝐻0 when it is true while the bias in favour is 

the maximum prior probability of not getting evidence against 𝐻0 when it is meaningfully false. Note also that these bias 

calculations only depend on the principle of evidence and not the specific valid measure of evidence used. 

Now consider an example of perhaps the sharpest disagreement between Bayesian and frequentist approaches. 

 

Example 2.   Jeffreys-Lindley paradox. 

For this 𝑥̅  ∼ 𝑁(𝜇, 𝜎0
2/𝑛) and 𝜇 ∼ 𝑁(𝜇0, 𝜏0

2) with the problem being to assess the hypothesis 𝐻0: 𝜇 = 𝜇0. In this case 

the relative belief ratio and the Bayes factor, defined via the spiked prior, are equal. It is the case that 𝑅𝐵(𝜇0 | 𝑥) → ∞ as 

𝜏0
2 → ∞, so with an increasingly diffuse prior, it seems that there is overwhelming evidence in favour of 𝐻0. The standard p-

value for this problem is given by the two-sided 𝑧-test and suppose that the associated p-value satisfies 

p-value =2 (1 − 𝛷 (
√𝑛|𝑥̅−𝜇0|

𝜎0
)) ≈ 0. 

There is then a sharp discrepancy between the frequentist and the Bayesian using a diffuse prior. Still, when the strength of 

the evidence is measured, 𝛱𝛹(𝑅𝐵(𝜇 | 𝑥 ) ≤ 𝑅𝐵(𝜇0|𝑥 ) |𝑥) → p-value as 𝜏0
2 → ∞, so the evidence becomes weak even 

though the relative belief ratio is large.  

The weakness of the evidence in favour is a partial response to this problem, but it is the bias in favour calculation that 

resolves it for us. For it is easy to show that the bias against converges to 0 and the bias in favour converges to 1 as 𝜏0
2 → ∞. 

In other words, if a very diffuse prior is used it is virtually certain that evidence in favour will be obtained even when the 

hypothesis is false. This tell us that there is little point in conducting or reporting the results of such a study. But there is a 

way out of this dilemma because it can also be shown that for a fixed prior both biases converge to 0 as the amount of data 

increases and so bias can be controlled by design. The lesson in this is that we should choose priors via elicitation, don’t 

choose arbitrarily diffuse priors in an attempt to be "conservative", and design to avoid bias. 
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There is another interesting aspect that arises from this simple example. Certainly, it is obvious that p-value is not 

a valid measure of evidence, at least according to our definition.  Some simple algebra shows, however, that with 𝑧0 =
|𝑥̅ − 𝜇0|/𝜎0 and 𝑟 = 𝑛𝜏0

2/𝜎0
2 then the difference in tail probabilities  

𝑝 ∗ = 2(1 − 𝛷(𝑧0))   −   2(1 − 𝛷({log(1 + 𝑟) +
𝑧0

2

1 + 𝑟
}

1
2

) 

 

is a valid measure of evidence via the cut-off 0. For example, with p-value = 0.05, Table 1 shows that such a value  

is sometime evidence against and sometimes is evidence in favour and this depends primarily on the value of 𝑟.  

 
Table 1: Evidence as determined by the two-sided 𝑧-test p-value with the location-normal. 

n 𝑟 𝑝∗ evidence 

10 1 -0.047 against 

10 100 0.019 in favour 

10 500 0.037 in favour 

50 50 0.005 in favour 

 

Also, the cut-off for determining evidence for or against occurs at 𝑧0
2 = [(1 + 𝑟) log(1 + 𝑟)]/𝑟 → ∞ as 𝑟 →∞, 

which implies that the associated p-value → 0. This general conclusion is not overly reliant on the particular prior chosen, 

see [21], and suggests that smaller p-values are necessary to determine evidence against as 𝑛 increases, since 𝑟 increases 

with 𝑛.  
       Interesting results are also obtained when considering bias in the estimation problem. 

 

E:  bias agai𝑛𝑠𝑡 = 𝐸𝛱𝛹
 (𝑀(𝜓 ∉ 𝑃𝑙𝛹 (𝑋) │ 𝜓)) = 𝐸𝛱𝛹

(𝑀(𝑅𝐵𝛹(𝜓 | 𝑋) ≤ 1 | 𝜓))  

      bias in favour = 𝐸𝛱𝛹
(𝑠𝑢𝑝𝜓:𝑑𝛹(𝜓,𝜓0)≥𝛿𝑀(𝜓0 ∉ 𝐼𝑚𝛹(𝑋) | 𝜓)) =  𝐸𝛱𝛹

(𝑠𝑢𝑝𝜓:𝑑𝛹(𝜓,𝜓0)≥𝛿𝑀(𝑅𝐵𝛹(𝜓0 | 𝑋) ≥ 1 | 𝜓)) 

                   

So, the bias against for estimation is the prior probability that true value is not in the plausible region 𝑃𝑙𝛹(𝑥) which implies 

that 1 − 𝐸𝛱𝛹
(𝑀(𝜓 ∉ 𝑃𝑙𝛹(𝑋) | 𝜓)) is the prior coverage probability (confidence) of 𝑃𝑙𝛹(𝑥). The bias in favour is an upper 

bound on the prior probability that a meaningfully false value is not in the implausible region, the set of values for which 

there is evidence against. For the bias against typically there exists the value 𝜓0 = argsup 𝑀(𝑅𝐵𝛹(𝜓 | 𝑋) ≤ 1 | 𝜓) so 

𝑀(𝜓 ∈ 𝑃𝑙𝛹(𝑋) | 𝜓) ≥ 1 − 𝑀(𝑅𝐵𝛹(𝜓0 | 𝑋) ≤ 1 | 𝜓0) and we have a lower bound on the (frequentist) confidence of 𝑃𝑙𝛹(𝑥). 
This allows us to give a frequentist interpretation to the plausible region in terms of coverage probabilities. This is an exact 

frequentist coverage probability when the object of interest 𝛹 is the full model parameter ө and, for a general 𝛹, has a similar 

interpretation for frequentist confidence regions with mixed models. In effect, this is an exact lower bound on the frequentist 

coverage probability for the model given by {𝑀(⋅ | 𝜓): 𝜓 ∈ 𝛹}  as the nuisance parameters have been integrated out. For the 

bias in favour the interpretation is similar to the idea of measuring the accuracy of a confidence region via the probability of 

covering a false value. Again, both biases converge to 0 with increasing amounts of data and so can be measured and 

controlled as part of ensuring that a statistical study produces reliable results. It is to be noted too that these frequentist 

properties hold for any prior. 

Various optimality properties, in terms of bias, are established in [21] for this approach to characterizing/measuring 

statistical evidence. A satisfying overall conclusion from this is that, if bias assessments are held as being essential, then 

there are complementary roles for frequentism and Bayes. The role of bias is now considered for Fieller’s problem. 

 
Example 1.   Fieller’s problem (continued). 

First consider the bias against measures. For 𝐻0: 𝜓0 = 2,  then bias against = 0.04 so there is no bias against 𝐻0. 

Also,  𝜓0 = argsupψ𝑀(𝑅𝐵𝛹(𝜓 | 𝑋) ≤ 1 | 𝜓) = 2 and 𝑀(𝑅𝐵𝛹(𝜓 | 𝑋) ≤ 1 | 2) = 0.04 and so the coverage probability 

of 𝑃𝑙𝛹(𝑥)  is at least 0.96. Therefore, the desired coverage probability has been obtained and there will never be an 

absurd region reported. Figure 2 is a plot of 𝑀(𝑅𝐵𝛹(2 | 𝑋) ≤ 1 | 𝜓) as a function of ψ. Note that with 𝑚 = 𝑛 = 20, 

then  𝑀(𝑅𝐵𝛹(𝜓 | 𝑋) ≤ 1 | 2) = 0.028, so 𝑃𝑙𝛹(𝑥) would then be a 0.972-confidence interval for 𝜓.  
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Fig. 2: Bias against 𝜓 as a function of ψ in Example 1. 

 

Tables 2 and 3 contain values of some of the bias in favour values for the H and E problems, respectively. It can be seen 

that obtaining small values for these quantities is much more demanding than controlling the bias against. This is strongly 

affected by the chosen 𝛿 as smaller values require ever more data to achieve a desired value for the bias in favour. 

 
Table 2: Bias in favour for H in Fieller’s problem. 

𝑚 = 𝑛 bias in favour for 𝐻0: 𝛹(𝜃) = 2 

10 0.797 

20 0.682 

100 0.117 

200 0.012 

 
Table 3: Bias in favour for E in Fieller’s problem. 

𝑚 = 𝑛 bias in favour for estimating 𝜓 

10 0.807 

20 0.671 

100 0.277 

200 0.161 

 
7.   Conclusions 

This paper has reviewed an approach to statistical reasoning that is an attempt to satisfy the desiderata for such a theory 

discussed at the beginning of the paper. The focus here has been on inferences driven primarily by the principle of evidence, 

which provides a characterization of statistical evidence, and the measurement and control of bias, again through the same 

characterization of statistical evidence. A happy consequence of this approach is a degree of unity between a Bayesian 

approach, which the inferences are as they involve a prior, and a frequentist approach, which here is primarily concerned 

with the reliability of the inferences obtained.  

        A fuller discussion would include much more commentary of what are conceived as the necessary steps involved in 

carrying out a statistical study. Based on our discussion here, however, the following steps seem necessary.  

1. Choose a model {𝑓𝜃: 𝜃 ∈ 𝛩}.   

2. Elicit a prior 𝜋. 

3. Specify the meaningful difference δ for the characteristic of interest 𝜓 = 𝛹(𝜃). 

4. Measure the biases and determine the appropriate amount of data 𝑥 to collect. 

5. Check the model against the data and modify it if necessary. 

6. Check the prior against the data and modify it if necessary. 

7. Make inferences about ψ based on the principle of evidence. 
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