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Abstract The problem of combining the evidence in several Bayesian inference bases is considered. Evidence is measured  

in each inference base using the relative belief ratio which gives an unambiguous prescription of whether there is evidence 

in favour of or against each possible value of an unknown such as a parameter. While there are many possible ways to 

combine the evidence, the method of linear pooling stands out as it preserves a consensus while others may not. There are 

constraints on this application, however, if one requires a formal Bayesian justification. In some applications where these 

restrictions do not hold, the approach can be generalized by allowing for the methodology known as Jeffrey 

conditionalization. 
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1 Introduction 
It is common to see phrases like “the evidence in the data suggests ….” or “based upon the evidence in the data …” as 

part of a statistical analysis. This is in spite of the fact that many approaches to formulating statistical theory do not explicitly 

provide a definition of how evidence is to be measured. For example, a p-value is often considered to be a measure of the 

evidence against a hypothesis but there are many reasons to suspect that these quantities do not measure evidence 

appropriately. Indeed p-values do not provide evidence in favour of a hypothesis and, associated with this, is the fact that 

there is no clear cut-off to even determine when a specific value is to be considered as evidence against. 

Given that one can see the purpose of a statistical analysis as providing the evidence in data concerning the answers to 

questions of interest, this lack of a clear treatment of this concept can be viewed as a defect. There is some recognition of 

this in the statistical literature, for example, see [1]-[6]. There is in fact a much more extensive discussion of evidence in the 

philosophy of science literature with [7] and [8] providing representative examples. 

In the paper the approach taken to measuring statistical evidence is as described in [5] and the associated issue of how, 

when there are multiples measures of evidence, these should be combined to provide a single overall measure is discussed. 

In Section 2 we formulate the basic problem. In Section 3 we discuss the possible solutions to the problem and focus on one 

of these. In Section 4 conclusions are drawn and further work is discussed. The technical details are not developed here but 

can be found in [9] on which much of this paper is based. 

 

2 The Problem 
It is necessary to first prescribe the ingredients of the statistical problem from which the measure of evidence is to be 

constructed. Of course, there is the data 𝑥 which will be assumed to have been collected correctly. In addition, there are two 

basic components that a statistician needs to choose. 

 

The Model: 𝑀 = {𝑓𝜃 ∶  𝜃 ∈ 𝛩}  a collection of conditional probability distributions for the observed data 𝑥 given θ such that 

the object of inferential interest is given by 𝜓 = 𝛹(𝜃), where 𝛹 ∶  𝛩 → 𝛹  is onto and to save notation the function and its 

range have the same symbol. 

 

The Prior: 𝜋 a probability distribution on 𝛩.  
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Both the model and the prior are subjective ingredients in a statistical analysis and so it is necessary to check these via 

the data to ensure that these are not contradicted by the objective part of the problem, namely, the data. It will be assumed 

hereafter that this has been done and both ingredients have passed their checks and we refer the reader to [5] as to how model 

checking and checking for prior-data conflict can be carried out. Note that this doesn’t mean that these ingredients are now 

viewed as being correct, only that they have not been contradicted by the data. 

 

There are two basic problems of inference that any theory of statistics needs to address. 

 

(i) Estimation: construct an estimate of the true value of 𝜓 = 𝛹(𝜃) together with an assessment of the accuracy of the 

estimate. 

(ii) Hypothesis Assessment: determine whether there is evidence in favour of or against the hypothesis 𝐻0: 𝛹(𝜃) = 𝜓0 

together with an assessment of the strength of this evidence. 

 

The solutions to these problems will be determined by the rules of inference adopted and these rules use the components 

of what will be called here the inference base, namely, 𝐼 = (𝑥, 𝑀, 𝜋) comprised of the data, model and prior. When interest 

is in inference about ψ the relevant inference base is given by 𝐼 = (𝑥, 𝑀𝛹 , 𝜋𝛹) where 𝑀Ψ = {𝑚𝜓: 𝜓 ∈ 𝛹}, 

𝑚𝜓(𝑥) = ∫ 𝑓𝜃(𝑥)𝜋(𝜃| 𝜓) 𝑑𝜃
Θ

 

and 𝜋(⋅  | 𝜓) is the prior on the nuisance parameters. So, the nuisance parameters have been integrated out to leave a model 

for the data that is now indexed by the parameter of interest 𝜓. 

 

Given that there is now a joint probability measure 𝑃 on (𝜓, 𝑥), namely,  𝜋𝛹(ψ)𝑚𝜓(x), the rules of inference can be 

stated in the context of a probability model (𝛺, ℬ, 𝑃). Suppose then interest is in whether or not a hidden value 𝜔 ∈ 𝛺 is in 

the event 𝐴 ∈ ℬ and it is observed that 𝜔 ∈ 𝐶 ∈ ℬ. There are three rules employed. 

 

R1 Principle of conditional probability: belief about the truth of 𝐴, as expressed by 𝑃(𝐴), is replaced by 𝑃(𝐴 | 𝐶). 

 

R2 Principle of evidence: the observation of 𝐶 is evidence in favour of 𝐴 when 𝑃(𝐴 | 𝐶) > 𝑃(𝐴), is evidence against 𝐴 

when 𝑃(𝐴 | 𝐶) < 𝑃(𝐴) and is evidence neither for nor against 𝐴 when 𝑃(𝐴 | 𝐶) = 𝑃(𝐴). 

 

R3 Principle of relative belief: when like alternatives 𝐴 ∈ {𝐴1, 𝐴2, … } are compared, evidence is ordered quantitatively 

by the relative belief ratio 𝑅𝐵(𝐴 | 𝐶) =  𝑃(𝐴 | 𝐶)/𝑃(𝐴).  

 

There is then evidence in favour of (against) 𝐴 being true when 𝑅𝐵(𝐴 | 𝐶) > (<)1 and no evidence either way 

when 𝑅𝐵(𝐴 | 𝐶) = 1. In the context where probability measures are given by continuous densities consider a sequence 

of neighbourhoods 𝐴𝜀 of say 𝜓 which converge nicely to 𝜓 so that  

 

RBΨ(𝜓 | 𝑥) = 𝑙𝑖𝑚𝜀↓0𝑅𝐵(𝐴𝜀  | 𝑥) = 𝜋Ψ(𝜓 | 𝑥)/𝜋Ψ(𝜓) 

 

holds under weak conditions (continuity and positivity of the prior 𝜋Ψ at ψ) where πΨ(⋅ | 𝑥) denotes the posterior density of 

ψ. The answer to (i) is then given by the estimate 𝜓(𝑥) = 𝑎𝑟𝑔 𝑠𝑢𝑝𝜓 𝑅𝐵Ψ(ψ | x) and the accuracy of the estimate assessed 

by computing the plausible region 𝑃𝐿Ψ(𝑥) = {ψ : 𝑅𝐵Ψ (ψ | x) >1}, the set of all values having evidence in their favour, and 

its posterior content. So, if 𝑃𝑙Ψ(𝑥) is small with high posterior content then 𝜓(𝑥) is considered an accurate estimate. For (ii) 

it is immediate that 𝑅𝐵Ψ(𝜓0 | 𝑥) indicates whether there is evidence in favor of or against 𝐻0. The strength of this evidence 

can be assessed by computing the posterior probability ΠΨ(𝑅𝐵Ψ(𝜓 | 𝑥) ≤ 𝑅𝐵Ψ(𝜓0 | 𝑥) | 𝑥). If 𝑅𝐵Ψ(𝜓0 | 𝑥) >1, then there 

is strong evidence in favour when this probability is big and if 𝑅𝐵Ψ(𝜓0| 𝑥) <1, then there is strong evidence against when 

this probability is small. 
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The basic problem of combining evidence can now be stated and this is done for two contexts. 

 

Context I. Suppose there is a single statistical model 𝑀 for the data 𝑥 and 𝑘 distinct priors 𝜋𝑖 so there are 𝑘 inference bases 

𝐼𝑖 = (𝑥, 𝑀, 𝜋𝑖) for 𝑖 = 1, … , 𝑘. It is assumed that the conditional priors 𝜋𝑖(⋅ | ψ) on the nuisance parameters are all the same, 

as is satisfied when 𝛹(𝜃) = 𝜃. This situation arises when there is a group of analysts who agree on 𝑀 and perhaps use a 

default prior for the nuisance parameters, while each member puts forward a prior for 𝛹. 

 

Context II. Suppose there are 𝑘 data sets, models, and priors as given by the inference bases 𝐼𝑖 = (𝑥𝑖, 𝑀𝑖, 𝜋𝑖) for 𝑖 ∈ {1, … , 𝑘} 

and there is a common characteristic of interest 𝜓 = 𝛹(𝜃𝑖) with the true value of 𝜓 being the same for each model, as will 

occur when ψ corresponds to some real-world quantity. 

 

Note that, since ψ references some real-world quantity, in Context II the set of possible values and its true value is the same 

for each model even though formally the function 𝛹 may differ between models but we suppress this in the notation. 

 

The simplest step away from Context I is when the data sets differ but all the models are based on the same basic set of 

candidates for the true probability measure and with the same conditional prior on the nuisance parameters. In such a context 

it seems obviously correct to simply combine the data sets and use the common model for the combined data set which places 

the problem within Context I. The result would not necessarily be the same if the data sets were not combined, so it is 

necessary that such a rule be applied first to the set of inference bases in general. 

 

Context I is a major simplification over Context II. Context I has been considered previously but from the point-of-view 

of combining priors as, for example, in [10]-[19]. The approach here is different in that interest is in combining the evidence 

measures, as given by the relevant relative belief ratios, rather than priors as the proper expression of the evidence is the goal 

of a statistical analysis. A solution for Context I is obtained based upon it having desirable properties. While a general 

solution for Context II is not currently available, it will be argued that there is a natural generalization of the solution for 

Context I that can be applied to many of these problems 

 

3 Combining Evidence 
 

The rules for combining evidence are stated here initially when interest is in 𝜃. The proofs of all statements in this 

section can be found in [9]. Let 𝛼 = (𝛼1, … , 𝛼𝑘) ∈ 𝑆𝑘 the (𝑘 − 1)-dimensional simplex for some 𝑘 ≥ 2 and, for now, 

suppose that α is given. While general combination rules could be considered, attention is restricted here to the power means 

of densities 

𝜋𝑡,𝛼(𝜃) ∝  (∑ 𝛼𝑖

𝑘

𝑖=1
𝜋𝑖

𝑡(𝜃))

1/𝑡

 

for 𝑡 ∈ ℝ.  These priors are all proper provided 𝑡 ≤ 1, but otherwise this needs to be checked.  

 

These rules for combining priors lead to rules for combining the individual relative belief ratios (see 1 below).  From 

many points of view linear pooling, which corresponds to 𝑡 = 1, represents the most logical way to combine the evidence 

measures in Context I and the properties justifying this conclusion are summarized below. 

 

1. A combination rule for the priors immediately leads to a combination rule for the relative belief ratios 𝑅𝐵𝑖(𝛩 | 𝑥) =
𝜋𝑖(𝜃 | 𝑥)/𝜋𝑖(𝜃), namely, 𝑅𝐵𝑡,𝛼(𝜃 | 𝑥) = 𝜋𝑡,𝛼(𝜃 | 𝑥)/𝜋𝑡,𝛼(𝜃) using the posterior and prior based on the 𝑡-th 

combination rule. It follows that, with 𝑚𝑖 denoting the 𝑖-th prior predictive based on the model 𝑀 and prior 𝜋𝑖 and 𝑚𝑡,𝛼 

denoting the prior predictive based on the prior 𝜋𝑡,𝛼, 

 𝑅𝐵𝑡,𝛼(𝜃 | 𝑥) =
 𝑚1,𝛼(𝑥)

𝑚𝑡,𝛼(𝑥)
𝑅𝐵1,𝛼(𝜃 | 𝑥) =

𝑚1,𝛼(𝑥)

𝑚𝑡,𝛼(𝑥)
 ∑

𝛼𝑖𝑚𝑖(𝑥)

𝑚1,𝛼(𝑥)

𝑘

𝑖=1

𝑅𝐵𝑖,Ψ(𝜓 | 𝑥). 

        So, the 𝑡-th combination rule is a constant times the linear pooling rule. This implies that  
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𝑎𝑟𝑔 𝑠𝑢𝑝𝜃𝑅𝐵𝑡,𝛼(𝜃 | 𝑥) = 𝑎𝑟𝑔 𝑠𝑢𝑝𝜃𝑅𝐵1,𝛼(𝜃 | 𝑥) 

        and { 

{𝜃: 𝑅𝐵𝑡,𝛼(𝜃 | 𝑥) ≤ 𝑅𝐵𝑡,𝛼(𝜃0 | 𝑥)} = {𝜓: 𝑅𝐵1,𝛼(𝜃 | 𝑥) ≤ 𝑅𝐵1,𝛼(𝜃0 | 𝑥)}. 
 

       Therefore, the estimate of 𝜃 and the ordering of the 𝜃 values are determined by linear pooling. 

 

2. It follows that ∩𝑖=1
𝑘 𝑃𝑙𝑖(𝑥) ⊂ 𝑃𝑙1,𝛼(𝑥), or all those values where the statisticians agree that there is evidence in favour, 

also have evidence in their favour under linear pooling. 

 

3. More generally, linear pooling preserves consensus, namely, if 𝑅𝐵𝑖(𝜃 | 𝑥) ≥ (≤)1 for 𝑖 = 1, … , 𝑘 and at least one 

𝑅𝐵𝑖(𝜃 | 𝑥) > (<)1, then 𝑅𝐵1,𝛼(𝜃 | 𝑥) > (<)1 while other rules do not necessarily satisfy this, see [9]. 

 

4. If (𝑖, 𝜃, 𝑥) has prior 𝛼𝑖𝜋𝑖(𝜃)𝑓𝜃(𝑥), then the relative belief ratio is 𝑅𝐵1,𝛼(𝜃 | 𝑥) and 𝛼𝑖𝑚𝑖(𝑥)/𝑚1,𝛼(𝑥) is the posterior 

probability of 𝑖. This means that linear pooling is formally Bayes. Here 𝛼𝑖 is interpreted as the convenor’s prior belief 

concerning the reliability of the 𝑖-th statistician’s inferences. Of course, it is possible to simply weight the statisticians 

equally. There are also many other approaches discussed in the literature for the determination of the 𝛼𝑖, see [20]-[22]. 

 

5. Linear pooling of priors does not preserve independence of events, which has been viewed as a negative property, but 

this is not an issue when combining evidence since, if 𝑅𝐵𝑖(𝜃 | 𝑥) = 1 for 𝑖 = 1, … , 𝑘, then 𝑅𝐵1,𝛼(𝜃 | 𝑥) = 1. 

 

6. The inferences are consistent as 𝑛 → ∞ and the prior that assigns the highest weight to the true value of the parameter 

will have the largest posterior weight for large 𝑛. 

 

7. It follows from a result proved in [23] that linear pooling is marginalization consistent, namely,  

 

𝑅𝐵1,𝛼,Ψ(𝜓 | 𝑥) = 𝐸𝜋(∙|𝜓)(𝑅𝐵1,𝛼(𝜃 | 𝑥) 

 

       and it is the only combination rule that satisfies this property. This says that, if the relative belief ratio for 𝜃 is averaged 

      using the conditional prior on the nuisance parameters, then the relative belief ratio for the parameter of interest is 

      obtained. This implies that properties 1-6 also hold for 𝑅𝐵1,𝛼,Ψ(𝜓 | 𝑥). 

 

There seems to be little reason to doubt that combining via linear pooling is the correct way to proceed in Context I. 

 

Context II is not as straight-forward and discussion is restricted here to situations where there is one set of data, 

although the models and priors can differ among the statisticians. The natural generalization of linear pooling is then to 

use the combination rule for parameter of interest 𝜓 given by  

 

𝑅𝐵1,𝛼,Ψ
∗ (𝜓 | 𝑥) =  ∑

𝛼𝑖  𝑚𝑖(𝑥)

𝑚1,𝛼(𝑥)

𝑘

𝑖=1

𝑅𝐵𝑖,Ψ(𝜓 | 𝑥) 

 

with the posterior given by the combination  

  

𝜋1,𝛼,Ψ
∗ (𝜓 | 𝑥) =  ∑  

𝛼𝑖𝑚𝑖(𝑥)

𝑚1,𝛼(𝑥)

𝑘

𝑖=1
𝜋𝑖,Ψ(𝜓 | 𝑥). 

 

In general, however, these rules are not formally Bayesian. In particular 𝑅𝐵1,𝛼,Ψ
∗ (𝜓 | 𝑥) is not the ratio of the posterior 

𝜋1,𝛼,Ψ
∗ (𝜓 | 𝑥) to the prior 𝜋1,𝛼,Ψ

∗ (𝜓). 
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The form of 𝑅𝐵1,𝛼,Ψ
∗ (𝜓 | 𝑥) can however be justified using the idea of Jeffrey conditionalization, see [24] and [25]. The 

value of 𝑅𝐵𝑖,Ψ(𝜓 | 𝑥) is formally Bayesian for the 𝑖-th statistician and, if the convener takes 𝛼𝑖𝑚𝑖(𝑥) to be their prior 

probability of (𝑖, 𝑥), then, having observed the data 𝑥, their posterior probability of 𝑖 becomes 𝛼𝑖𝑚𝑖(𝑥)/𝑚1,𝛼(𝑥). The 

convenor then uses these probabilities to combine the measures of evidence and to form their overall posterior. So really 

there are several separate Bayesian updates taking place. 

 

Indeed 𝑅𝐵1,𝛼,Ψ
∗  has all the nice properties of 𝑅𝐵1,𝛼,Ψ, although it is not formally Bayes, but there is one concern that 

needs to be addressed. In Context I the weights 𝛼𝑖𝑚𝑖(𝑥)/𝑚1,𝛼(𝑥) all depend on the data through a minimal sufficient statistic 

(mss) for the common model {𝑚𝜓 ∶ 𝜓 ∈ 𝛹} and also can be considered as conditional weights given the value of any 

ancillary statistic for this model. So, in Context I the 𝑖-th weight is determined by the convenor’s initial prior probability 𝛼𝑖 

but also by how well the 𝑖-th model does at predicitng the observed value of this mss. In Context II it is generally not the 

case that 𝛼𝑖𝑚𝑖(𝑥)/𝑚1,𝛼(𝑥) depends on the data through a common mss and ancillary statistics play a role in the prediction. 

This raises the issue as to whether or not these weights are directly comparable. 

 

There are situations, however, where this issue can be addressed. For example, suppose for each model the data can be 

split as 𝑥 ↔ (𝐿(𝑥), 𝐴(𝑥)) where 𝐴(𝑥) is ancillary for each model. In this case it makes more sense to use the weights given 

by 

  
𝛼𝑖𝑚𝑖(𝑥 | 𝐴(𝑥))

𝑚1,𝛼𝑎(𝑥 | 𝐴(𝑥))
 

 

as now all the inference bases are being considered based on how well they are predicting 𝐿(𝑥). This situation arises with 

group models and we provide a simple example here that is more extensively discussed in [9]. 

 

Example Linear regression. 

Suppose that the data is (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1, … , 𝑛 and there are two analysts where both propose a simple regression model 

𝑦 = 𝑋𝛽 + 𝜎𝑧 where 𝑋 = (1𝑛 𝑥 ) ∈ ℝ𝑛×2with 1𝑛 ⊥ 𝑥 and ||𝑥|| = 1, 𝛽 = (𝛽1, 𝛽2)′ ∈ ℝ2 and 𝜎 > 0 are unknown and 𝑧 is 

a sample of  𝑛 from a 𝑁(0,1) for analyst 1 and is a sample of 𝑛 from a 𝑡𝜆/ √(𝜆 − 2)/𝜆 distribution for analyst 2 for some 

value 𝜆 > 2, where 𝑡𝜆 denotes the t distribution on 𝜆 degrees of freedom. In both models 𝜎2 is the variance of a 𝑦𝑖. Letting 

𝑏 = (𝑋′𝑋)−1𝑋′𝑦 be the least squares estimate of 𝛽 and 𝑠2 = ||𝑦 − 𝑋𝑏||2, then 𝑦 ↔ (𝐿(𝑦), 𝐴(𝑦)) where 𝐿(𝑦) = (𝑏, 𝑠2) and 

𝐴(𝑦) = (𝑦 − 𝑋𝑏)/𝑠 is ancillary for both models. Further suppose that the quantity of inferential interest is the slope 

parameter 𝜓 = 𝛹(𝛽1, 𝛽2, 𝜎2) = 𝛽2. 

For the prior suppose both analysts agree on 𝛽 | 𝜎2 ∼ 𝑁2(0, 𝜏0
2𝜎2𝐼) and 1/𝜎2 ∼ gamma(𝛼1, 𝛼2). Note that the prior 

mean for 𝛽 equal to 0 may entail subtracting a known, fixed constant vector from 𝑦 so this, and the assumption that 1𝑛 ⊥ 𝑥, 

may entail some preprocessing of the data. The prior distribution of the quantity of interest is then 𝛽2~𝜏0 √𝛼2/𝛼1𝑡2𝛼1
. 

Consider now a numerical example drawn from [26] where the response variable is income in U.S. dollars per capita 

(deflated), and the predictor variable is investment in dollars per capita (deflated) for the United States for the years 1922–

1941. The data are provided in Table 1. The data vector 𝑦 was replaced by 𝑦 − 𝑋(340,3)′ as this centered the observations 

about 0. The hyperparameters were determined by an elicitation procedure, see [9], and this led to the values 𝜏0 = 0.54, 𝛼1 =
4.05, 𝛼2 = 140.39. 

Table 2 presents the weights that result when different standardized (to have unit variance) 𝑡𝜆 error distributions are 

considered to be combined with the results from a 𝑁(0,1) error assumption. Presumably this arises when one analyst is 

concerned that tails longer than the normal are appropriate. As can be seen the normal error assumption dominates except 

for 𝜆 = 100 when the inferences don’t differ by much in any case. This is not surprising as various residual plots don’t 

indicate any issue with the normality assumption for these data. These weights were computed using importance sampling 

and were found to be robust to the prior by repeating the computations after making small changes to the hyperparameters. 

The approach taken in this example is easily generalized to more general linear regression models including situations where 

the priors change. 
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4 Conclusions 
 The problem of how to combine evidence has been considered for a Bayesian context where each analyst proposes 

a model and prior for the same data. Linear opinion pooling is seen as the natural way to make such a combination at 

least when the inference bases only differ in the priors on the parameter of interest. This has been shown to have 

appropriate properties such as preserving a consensus with respect to the evidence and, when combining evidence is 

considered as opposed to just combining priors, behaves appropriately when considering independent events. In certain 

contexts the idea can be extended in a logical way based on the idea underlying Jeffrey conditionalization. There are 

restrictions as in the end the posterior weights have to be seen to be comparable and focused on that aspect of the data 

which is relevant for inference about the unknowns. Asymptotically the approach behaves correctly. 

    This does not cover all contexts where one might want to combine evidence as when there are different data sets 

and different models. Generally, it may be that the only aspect in common among the models is the characteristic of 

interest 𝛹 and then it is not clear how we should combine and this warrants further investigation. 

 

 

 

 

 

Table 1: Haavelmo's data on income and investment from [26] 

 

 

 

 

 

 

 

 

 

 

 

 

             

Table 2: Weights for normal and (standardized) 𝑡𝜆 errors in the Example. 
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