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Extended Abstract 
In this work, we develop a general and unified framework for principal component analysis (PCA) applicable to 

Riemannian, sub-Riemannian and symplectic manifold-valued data and functional data. Almost all existing statistical 

methods for manifold data rely on the tangent bundle of the manifold, with the purpose of transforming the nonlinear 

manifold to the linear tangent spaces. However, such methods become invalid when the tangent vectors are constrained to 

lie in a subspace of the tangent space since the exponential map will no longer be a local diffeomorphism. This scenario, 

known as the sub-Riemannian geometry, has attracted considerable attention in recent years.  

We propose to shift the tangent space viewpoint and move towards the dual spaces of the tangent spaces, i.e., the 

cotangent spaces, and build subspaces based on initial covectors. More generally, motivated by the Arnold-Liouville theorem 

we propose the anchor-compatible identification for subspaces with first integrals (ACISFI), which constructs a properly 

nested sequence of subspaces as the fibres of a carefully chosen set of functionally independent functions defined on the 

cotangent bundle, i.e., the first integrals of the Hamiltonian system, generalising the ideas of obtaining subspaces from 

linearly independent tangent vectors [1] or from affinely independent points [2]. There are several advantages of the ACISFI 

over the existing PCA on manifolds. First, the subspaces can be learnt from sample points in a completely data-driven way. 

We do not impose a particular form for the Hamiltonian, e.g., the Hamiltonian which induces the geodesic flow, but it can 

be chosen as any smooth function on the manifold, and there is not any a priori restriction on the form of first integrals as 

well. Second, the submanifolds can be defined globally. There is no need to be constrained within the complement of the cut 

loci of data points. Third, the user-defined anchor point can be guaranteed to be included in the subspace, whereas a particular 

point may appear or disappear as the dimension of the subspace varies in the exponential barycentric subspaces (EBS) [2]. 

Fourth, it is computationally simpler to implement in practice. Furthermore, with an alternative definition using foliations 

and Bott partial connections of the EBS, we prove that our proposed approaches would generate subspaces which coincide 

with the EBS in some cases, which ultimately leads to a unified framework for subspace analysis. We also extend this 

framework to PCA for manifold-valued functional data. We transform the random processes on the manifold to function-

valued stochastic processes [3] and prove that it yields upper bounds to residual variances without the need of an assumption 

on the sectional curvatures on the manifold, which is required in [4]. We illustrate our methods through simulated data in the 

symplectic manifold R^{2n} and the cotangent bundle of the Stiefel manifold, and brain imaging data from the the 

Developing Human Connectome Project (dHCP). 
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