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Abstract - Dynamic Contract Enhanced Magnetic Resonance (MR) Imaging (DCE-MRI) has been widely used as a non-invasive 
assessment approach to estimate the myocardial blood flow (MBF). The delineation of a hypo-perfused region (low MBF region) is 
important for understanding a patient’s heart condition in clinical diagnosis. In this paper, a Markov random field constrained Gaussian 
mixture model (GMM-MRF) classification method is introduced to classify MBF maps using myocardial perfusion DCE-MRI data. The 
GMM-MRF method, trained with an ICM algorithm, makes use of spatial neighbourhood information to improve classification accuracy. 
The proposed method is applied to and assessed on both synthetic and clinical data, and compared with established classification methods.

Keywords: DCE-MRI, myocardial perfusion, classification, lesion delineation, Gaussian Mixture Model, Markov random field
constrained Gaussian mixture model.

1. Introduction
Myocardial ischaemia (inadequate perfusion) is highly related to many forms of coronary heart disease (CHD). Usually, 
this disease occurs when the blood supply to the myocardium (the heart muscle) is limited. The limitation of the blood 
supply is generally caused by a narrowing of the coronary arteries. Dynamic contrast-enhanced Magnetic Resonance Imaging 
(DCE-MRI) is a non-invasive assessment method to measure myocardial perfusion, and further to measure the degree of the 
hypo-perfusion (inadequate perfusion) of the myocardium [1]. The Fermi model [2] is widely used to quantify the myocardial 
blood flow (MBF) and detect hypo-perfused regions in the myocardium, and it has been used in this paper to generate the 
MBF map of the myocardial image.

In this paper, a novel Markov random field constrained Gaussian mixture model (GMM-MRF) is introduced to classify 
the MBF map into two categories: lesions versus healthy tissues. The Gaussian mixture model (GMM) classification method 
(see details in [3], Chapter 9) is widely applied to achieve this classification task. However, a main shortcoming of the GMM 
classification method for myocardial perfusion DCE-MRI is that its classification map contains physiologically unrealistic 
small and even singular clusters [4]. Spatial prior information has been incorporated to address this issue in [4, 5] using a 
spatial variant finite mixture model (SVFMM) and hierarchical Bayesian model (HBM). However, the method proposed in [4] 
only reduces the number of small and singular clusters (rather than eliminate them altogether), and the method proposed in [5] 
is computationally expensive. Therefore, the main aim of the proposed method is to develop a fast and effective classification 
method based on the estimated MBF map. In this study, the Fermi model [2] is applied to estimate the MBF map. However, 
the proposed method is generic and can be applied to other types of images. Specifically, it can be applied to the MBF 
maps estimated by different methods, or different types of parametric maps. Moreover, it can also be directly applied to the 
DCE-MRI data.

In this work, the proposed method has been applied to and assessed on both synthetic and clinical data. We have used 
GMM and HBM, proposed in [5], as benchmark methods for comparison. Section 2 describes the statistical model. Section 3 
describes the inference procedures. Section 4 provides an overview of the synthetic and clinical data, on which subsequently 
a comparative performance analysis is conducted. Section 5 completes this paper with a discussion and concluding remarks.
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2. Statistical model
Let 𝑥𝑖 represent the signal intensity (or a parameter such as MBF) of pixel 𝑖 of an image (or a parametric map) where
𝑖 = 1, 2, ..., 𝑁 and 𝑁 is the number of pixels. Any pixel 𝑖 in the image is either labelled as“healthy” or as “ lesion”. The
pixel with the healthy label has the value 𝑘𝑖 = 0, and on the other hand, the pixel with the lesion label has the value 𝑘𝑖 = 1.
An assumption of this model is that all pixels that have the label “healthy" are from one Gaussian distribution with mean 𝜇0
and variance 𝜎2

0 . Similarly, all pixels that have the label “lesion" are from another Gaussian distribution with mean 𝜇1 and
variance 𝜎2

1 . Therefore, the statistical model can be expressed as:

𝑃(𝑥𝑖 |𝝁,𝝈2, 𝑘𝑖) =
𝑘𝑖√

2𝜋𝜎1
exp

(
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2𝜎2
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(1)

where 𝝁 = {𝜇0, 𝜇1}, 𝝈2 = {𝜎2
0 , 𝜎

2
1 }. Specifically, when a pixel 𝑖 is in the healthy group and 𝑘𝑖 = 0, its probability distribution

is

𝑃(𝑥𝑖 |𝝁,𝝈2, 𝑘𝑖 = 0) =
1

√
2𝜋𝜎0

exp

(
− (𝑥𝑖 − 𝜇0)2

2𝜎2
0

)
. (2)

On the other hand, if a pixel is the in the lesion group, its probability distribution has a similar form to equation (2) with
replacements of the parameters from 𝜇0 and 𝜎2

0 to 𝜇1 and 𝜎2
1 . The advantage of this modelling approach is that given the

label 𝑘𝑖 of pixel 𝑖, the conditional distribution of 𝑥𝑖 is a standard Gaussian distribution. Let 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁 }, the joint
probability distribution of 𝑋 is

𝑃(𝑋 |𝝁,𝝈2, 𝐾) =
𝑁∏
𝑖=1

𝑃(𝑥𝑖 |𝝁,𝝈2, 𝑘𝑖) (3)

where 𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑁 }. Because of the sum in equation (1), computing the log likelihood function from equation (3),
which requires a marginalisation over the unknown labels, is analytically intractable. However, if the labels 𝐾 are assumed to
be known, the conditional likelihood function of equation (3) has a closed form. Specifically, making use of equation (2), the
conditional negative log likelihood function can be expressed as

− log 𝑃(𝑋 |𝝁,𝝈2, 𝐾) ∝ 𝑁0 log𝜎0 + 𝑁1 log𝜎1 +
𝑁0∑
𝑝=1

(𝑥𝑝 − 𝜇0)2

2𝜎2
0

+
𝑁1∑
𝑞=1

(𝑥𝑞 − 𝜇1)2

2𝜎2
1

(4)

where 𝑁0 is the number of pixels that are labelled as healthy and 𝑁1 is the number of pixels that are labelled as lesions. 𝑝 and
𝑞 are the indices for healthy and lesion pixels.

The myocardial lesion pixels are physiologically connected spatially because the blood supply to the myocardium is from
three coronary arteries (which can potentially get blocked), and each artery controls a connected region (rather than isolated
muscle cells). A Markov random field prior is used to model these spatial connections in the present work. Specifically, the
Markov random field prior for label 𝑘𝑖 can be expressed as

𝑃(𝑘𝑖 |𝒌−𝑖) =
1
𝑄

exp (−𝑈 (𝑘𝑖 |𝒌−𝑖)) (5)

where 𝒌−𝑖 denotes the set of all other labels except 𝑘𝑖 . Specifically, 𝒌−𝑖 = {𝑘 𝑗} 𝑗≠𝑖 . 𝑄 is a normalization constant of the
prior distribution 𝑃(𝑘𝑖 |𝒌−𝑖). The function 𝑈 is usually called the potential function. Since only the neighbours of pixel 𝑖 is
considered to affect the value of 𝑘𝑖 , the potential function𝑈 is defined as

𝑈 (𝑘𝑖 |𝒌−𝑖) =
1
𝑇

∑
𝑗∼𝑖
𝑢(𝑘𝑖 |𝑘 𝑗) (6)

where 𝑗 ∼ 𝑖 represents all pixels 𝑗 that are the neighbours of pixel 𝑖 and 𝑇 is the weight parameter. In this study, the neighbours
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Fig. 1: This figure shows pixel 𝑖 and its neighbours. The four pixels marked by yellow triangles are the first order neighbours.
The eight pixels marked by green triangles are the second order neighbours.

of pixel 𝑖 is defined in Fig. 1, and furthermore 𝑢 is defined as

𝑢(𝑘𝑖 |𝑘 𝑗) =


−

(
1
2

)𝑜−1
𝑘𝑖 = 𝑘 𝑗 ,(

1
2

)𝑜−1
𝑘𝑖 ≠ 𝑘 𝑗

(7)

where 𝑜 is the degree of order for the neighbours. For instance, if pixel 𝑗 is the first order neighbour of pixel 𝑖, 𝑜 = 1, and if 𝑗
is the second order neighbour, 𝑜 = 2. In this work, up to second order neighbours have been used: 𝑜 ∈ {1, 2}.

According to Bayes theorem, the posterior distribution of 𝑘𝑖 is

𝑃(𝑘𝑖 |𝑥𝑖 , 𝝁,𝝈2, 𝒌−𝑖) ∝ 𝑃(𝑥𝑖 |𝑘𝑖 , 𝝁,𝝈2)𝑃(𝑘𝑖 |𝒌−𝑖) (8)

and the posterior distribution of 𝐾 is

𝑃(𝐾 |𝑋, 𝝁,𝝈2, 𝐾−) ∝
𝑁∏
𝑖=1

𝑃(𝑥𝑖 |𝑘𝑖 , 𝝁,𝝈2)𝑃(𝑘𝑖 |𝒌−𝑖) (9)

where 𝐾− is the set of the neighbouring labels, 𝐾− = {𝒌−𝑖}𝑁𝑖=1. This posterior distribution is intractable because of the
summation in equation (1). However, an algorithm called iterated conditional modes (ICM) [6] can be applied to find the
maximum a posteriori (MAP) estimate of equation (9).

3. ICM algorithm
In order to apply the ICM algorithm, two conditions must be satisfied. Firstly, the observations 𝑥𝑖 have to be conditionally
independent given their corresponding labels 𝑘𝑖 . Secondly, the conditional dependence structure of the labels 𝑘𝑖 can be
described by a Markov random field. Both conditions are satisfied in this study, and the ICM algorithm can thus be applied.

The negative logarithm of the posterior distribution 𝑃(𝑘𝑖 |𝑥𝑖 , 𝝁,𝝈2, 𝑘−𝑖) in equation (8) can be expressed as

𝐿𝑖 = − log 𝑃(𝑘𝑖 |𝑥𝑖 , 𝝁,𝝈2, 𝑘−𝑖) ∝


log𝜎0 +

(𝑥𝑖 − 𝜇0)2

2𝜎2
0

+ 1
𝑇

∑
𝑗∼𝑖
𝑢(𝑘𝑖 |𝑘 𝑗) 𝑘𝑖 = 0,

log𝜎1 +
(𝑥𝑖 − 𝜇1)2

2𝜎2
1

+ 1
𝑇

∑
𝑗∼𝑖
𝑢(𝑘𝑖 |𝑘 𝑗) 𝑘𝑖 = 1.

(10)

The ICM algorithm aims to decrease the negative logarithm of the conditional posterior probability by updating the value of
label 𝑘𝑖 . Specifically, given the old value 𝑘old

𝑖 , the old negative logarithm of the conditional posterior probability 𝐿old
𝑖 can be

calculated. Then, by proposing a new value 𝑘new
𝑖 , 𝐿new

𝑖 can be calculated. If 𝐿new
𝑖 < 𝐿old

𝑖 , then the old value is updated from
𝑘old
𝑖 to 𝑘new

𝑖 . By iteratively processing these steps for all pixels, the updated labels 𝐾new are obtained. Given 𝐾 = 𝐾new, the
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new global negative logarithm of the conditional posterior probability can be calculated as

𝐺new = − log 𝑃(𝐾 = 𝐾new |𝑋, 𝝁,𝝈2, 𝐾−) ∝ 𝑁0 log𝜎0 + 𝑁1 log𝜎1 +
𝑁0∑
𝑝=1

(𝑥𝑝 − 𝜇0)2

2𝜎2
0

+
𝑁1∑
𝑞=1

(𝑥𝑞 − 𝜇1)2

2𝜎2
1

+ 1
𝑇

𝑁∑
𝑖=1

∑
𝑗∼𝑖
𝑢(𝑘𝑖 |𝑘 𝑗). (11)

This equation can also be used to calculate the old negative logarithm of the global conditional posterior probability 𝐺old by
replacing 𝐾new by 𝐾old.

The conditional posterior distributions for 𝝁 and 𝝈2 have closed forms. Since the prior distribution of 𝑘𝑖 is independent
on 𝝁 and 𝝈2, the estimations of 𝝁 and 𝝈2 can be obtained using the log conditional likelihood function. Specifically, setting
the derivatives with respect to 𝝁 and 𝝈2 of equation (4) to zero gives the following maximum likelihood estimates (MLE):

𝜇̂0 =
1
𝑁0

𝑁0∑
𝑚=1

𝑥𝑚 (12) 𝜎̂2
0 =

1
𝑁0

𝑁0∑
𝑚=1

(
𝑥𝑚 −

1
𝑁0

𝑁0∑
𝑚=1

𝑥𝑚

)2

. (13)

𝜇̂1 =
1
𝑁1

𝑁1∑
𝑛=1

𝑥𝑛 (14) 𝜎̂2
1 =

1
𝑁1

𝑁1∑
𝑛=1

(
𝑥𝑛 −

1
𝑁1

𝑁1∑
𝑛=1

𝑥𝑛

)2

. (15)

Given the expression of the conditional posterior distribution and the MLE of the parameters, the details of the MAP
estimation using the ICM algorithm can be found in algorithm 1.

4. Data and results
4.1. Data
The cardiac MRI exams were performed with a Siemens MAGNETOM Avanto (Erlangen, Germany) 1.5-Tesla scanner
with a 12-element phased array cardiac surface coil at Golden Jubilee National Hospital, Glasgow, UK. The assessment of
resting myocardial perfusion was performed during intravenous administration of 0.075 mmol/kg of contrast agent (gadoterate
meglumine, Dotarem, Guebert S.A.). The mid slice of the myocardial perfusion DCE-MRI data is used to estimate the MBF
by the Fermi method [2]. The choice of the clinical data is consistent with the clinical data used in [5] for easier comparisons.

The synthetic data is designed to mimic the clinical data used in this work. Similarly, for easier comparison, the synthetic
data is also consistent with the data generated in [5]. A summary of the design is illustrated here. A double exponential curve
(16) is used to generate the true signal intensity values given time point 𝑡 for healthy tissues and lesions:

𝑠(𝑡) = 𝑝2𝑝3

(𝑝2 − 𝑝1)
× (𝑒−𝑝1𝑡 − 𝑒−𝑝2𝑡 ). (16)

In other words, for all pixels with the same label, “healthy" versus “lesion", the corresponding true signal intensities are the 
same. Gaussian noise (general noise) and Rician noise (commonly assumed for MRI data [8]) are added to the signals to 
generate the synthetic data. In this work, the parameters for healthy tissue are set to 𝑝1 = 0.01, 𝑝2 = 0.4, 𝑝3 = 25, and the 
parameters for lesions are set to 𝑝1 = 0.02, 𝑝2 = 0.3, 𝑝3 = 20. The details of the choices of these values can be found in [5].

4.2. Results
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Algorithm 1: ICM algorithm for the Markov random field constrained Gaussian mixture model
Data: 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁 }
Output: 𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑁 }
Generate initial values of 𝐾 and set it as 𝐾old. The initial values can be obtained using standard established clustering
algorithms, e.g. k-means [7] or GMM. To avoid the local minima issue, multiple initial values can be generated ;

Given 𝐾old, estimate 𝝁old and (𝝈2)old using equations (12)-(15);
Given 𝐾old, 𝝁old and (𝝈2)old, calculate global negative logarithm posterior 𝐺old using equation (11).;
for 𝑖 ← 1 to 𝑁 do

Given 𝐾old, calculate 𝝁old and (𝝈2)old using equations (12)-(15);
Given 𝐾old, calculate old local negative logarithm posterior 𝐿old

𝑖 for pixel 𝑖 using equation (10);
Give a new 𝑘new

𝑖 = |𝑘old
𝑖 − 1|;

Given 𝐾new, calculate new 𝝁new and (𝝈2)new using equations (12)-(15);
Given new 𝑘new

𝑖 , 𝝁new and (𝝈2)new, calculate new local negative logarithm posterior 𝐿new
𝑖 for pixel 𝑖 using

equation (10);
If 𝐿new

𝑖 < 𝐿old
𝑖 , update old 𝑘old

𝑖 using new 𝑘new
𝑖 .

end
Given 𝐾 , calculate 𝝁 and 𝝈2 using equations (12)-(15);
Given 𝐾 , 𝝁 and 𝝈2, calculate global negative logarithm posterior 𝐺new using equation (11);
Given a small threshold 𝜖 = 0.01;
if 𝐺old − 𝐺new > 𝜖 then

Update 𝐺old using 𝐺new;
Go back to the for loop above;

else
Stop the algorithm and the latest updated values of 𝐾 are the estimated MAP;

end

Figure 2 shows the synthetic data and results generated given Rician noise with scale 𝜎2 = 1.82. Panel (c) shows the 
GMM classification map, which contains many small and singular clusters, as mentioned in Section 1. Panels (d) (f) and (g) 
present the classification maps using the proposed GMM-MRF method, for different weight parameters 𝑇 . For 𝑇 = 10, the 
spatial prior is not strong enough, and there are still a few small and singular clusters left. However, when the strength of the 
spatial prior is increased, 𝑇 = 1 and 𝑇 = 0.1, all singular clusters are removed, and only a single connected lesion is predicted. 
However, even the best performance (the one that is closest to the ground truth in panel (b)), 𝑇 = 1, is still not as good as 
the classification map generated by the HBM method proposed in [5]. However, the HBM model is more complex and incurs 
much higher computational costs, as we discuss in more detail further below.

To quantitatively compare these methods, 10 sets of synthetic data given different types of noise and different values of 
scales are generated. The average number of misclassified pixels is used as the assessment criterion to compare different 
methods, which is shown in Table 1. It can be seen that the proposed GMM-MRF method with different weight parameters 
performs much better than the GMM method, but is not as good as the HBM method proposed in [5]. In particular, when 
𝑇 = 1, the GMM-MRF method performs better than with 𝑇 = 0.1 and 𝑇 = 10. When the weight parameter is too large 
(𝑇 = 10), the spatial information is too weak to eliminate all singular and small clusters. On the other hand, when the weight 
parameter is too small (𝑇 = 0.1), the spatial information is too strong and more borderline pixels are misclassified.

As shown in Table 1 and Fig. 2, the proposed GMM-MRF method is not as accurate as the HBM method in [5]. The 
reason is that the proposed method is designed as a computationally cheaper alternative. In fact, the choice of different models 
can be considered as a trade-off between computational efficiency and accuracy. While the proposed GMM-MRF method is 
not as accurate as the HBM method in [5], it is much faster to calibrate and apply. In our studies, it took less than 1 minute to 
apply the GMM-MRF method, while the HBM method required run times of several hours using the same hardware.
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(a) MBF map (b) Classification truth (c) GMM (d) GMM-MRF T=0.1

(e) MBF truth (f) GMM-MRF T=1 (g) GMM-MRF T=10 (h) HBM

Fig. 2: Synthetic data and results generated given Rician noise with scale 𝜎2 = 1.82. Panel (a) shows the estimated MBF
map (rescaled to [0,1]). Panel (b) shows the ground truth of the classification map. Panel (c) shows the classification map
generated with the GMM method. Panel (e) shows the ground truth of the MBF map (rescaled to [0,1]). Panels (d) (f) and
(g) show the classification maps generated with the proposed GMM-MRF method, given 𝑇 = 0.1, 1, 10 (smaller 𝑇 indicates
stronger spatial prior). Panel (h) shows the classification map generated with the HBM method proposed in [5]. Yellow pixels
indicate healthy tissues. Dark green pixels indicate lesions. Black pixels represent the background, which can be ignored.

The proposed GMM-MRF method has also been tested on the clinical data. Figure 3 shows the clinical data and
classification maps generated by different methods. In panel (b), the classification map generated by the GMM method shows
a few small and singular clusters at the right bottom of the myocardial image. The GMM-MRF method eliminates all singular
clusters when 𝑇 = 0.1 and 𝑇 = 1. However, it can be seen that a connected group of misclassified pixels is located in the
right bottom of the myocardial image in panels (d) - (f), which may be a consequence of spatial correlated noise. There is
no such issue in the synthetic data, where the noise is assumed to be independent. However, for the clinical data, because
of some artifacts, e.g. intensity inhomogeneity, the image may have spatial correlated noise, which affects the parametric
map (panel (a) in Figure 3). Recall that the ICM algorithm is a greedy optimization algorithm, which may get stuck in local
optima, and some of these local optima appear to be related to artifacts caused by the spatial correlation structure of the noise.
The HBM method, on the other hand, is a sampling-based method, using an MCMC algorithm, which avoids any entrapment
in suboptimal local optima, albeit at substantially increased computational costs. Interestingly, our results suggest that if
the spatial correlation of the noise is not too strong, the novel proposed GMM-MRF method can also accurately delineate
the position of the hypo-perfusion region (see panels (g) - (i) in Figure 3), without the erroneous prediction of any spurious
lesions.

5. Discussion and Conclusion
The main aim of the present paper has been to develop a fast spatially constrained classification method to automatically 
detect lesions in CMR images. The proposed GMM-MRF method is a GMM imbued with spatial information using a Markov 
random field prior. A fast greedy optimization algorithm, the ICM algorithm, has been used to train the proposed GMM-MRF 
model and find the MAP. The difference between this algorithm and the more commonly used EM algorithm [9] has been 
described in [10]. The EM algorithm aims to optimize the parameters 𝜽 (𝝁 and 𝝈2 in our case) by iteratively proceeding:
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Table 1: The average number of misclassified pixels

SNR/sd*(Gaussian) SNR/sd(Rician)
4.1/2 3.27/2.5 2.91/1.8

GMM 64.0 234.4 183.4
GMM-MRF 𝑇 = 0.1 27.2 27.4 43.6
GMM-MRF 𝑇 = 1 3.8 27.1 20.6
GMM-MRF 𝑇 = 10 40.3 60.7 31.6

HBM Proposed in [5] 2.9 4 3.5
*The abbreviation “sd" in the table stands for standard deviation of the
Gaussian or Rician noise, and “SNR" means signal-to-noise ratio. The
results are averages over 10 independent synthetic datasets.

(a) MBF map (b) GMM (c) HBM (d) GMM-MRF T=0.1 (e) GMM-MRF T=1

(f) GMM-MRF T=10 (g) MBF extra (h) GMM extra (i) GMM-MRF extra

Fig. 3: Clinical data and model predictions. Panel (a) shows the estimated MBF map (rescaled to [0,1]). Panel (b) shows
the classification map generated by the GMM method. Panel (c) shows the classification map generated by the HBM method
proposed in [5]. Panels (d) - (f) show the classification maps generated by the GMM-MRF method, given 𝑇 = 0.1, 1, 10 (a
smaller 𝑇 indicates a stronger spatial prior). Panels (g) - (i) show the MBF map, GMM classification map and GMM-MRF
classification map, respectively, for an extra data set. Yellow pixels indicate healthy tissues. Dark green pixels indicate lesions.
Black pixels represent the background, which can be ignored.

1. 𝜽∗ = arg max𝜃 𝐸 [log 𝑃(𝜽 , 𝐾, x)]𝛾 (𝐾)

2. 𝛾(𝐾) = 𝑃(𝐾 |𝜽∗, x).

The ICM algorithm, on the other hand, aims to optimize the parameter vector 𝜽 and the hidden labels 𝐾 with the following
iterative procedure:

1. 𝜽∗ = arg max𝜃 𝑃(𝐾∗, 𝜽 , x)

2. 𝐾∗ = arg max𝐾 𝑃(𝐾, 𝜽∗, x).

In this way, the ICM algorithm can be seen as a (faster) modal approximation of the EM algorithm, and it has been shown to 
be equivalent to the coordinate descent algorithm [11]. The adoption of the ICM algorithm in our work reflects a trade-off 
between computational efficiency and accuracy [10].

146-7



We have assessed the performance of the proposed GMM-MRF model on synthetic and real clinical data, and compared
it with two alternative methods: a standard GMM without the incorporation of spatial neighbourhood information, and the
HBM of [5]. The new GMM-MRF model substantially outperforms the standard GMM, in that it avoids the singular and
physiologically unrealistic small clusters that the latter is susceptible to. The delineation of the lesions is not as accurate as
achieved with the HBM, though (see Figure 2), and it can occasionally lead to spurious lesion predictions (see Figure 3 c-f).
This is a consequence of the greedy nature of the training scheme, which renders it susceptible to entrapment in local optima.
The MCMC-based sampling scheme of the HBM in [5] avoids this problem and is more robust. However, this performance
improvement comes with substantially higher computational costs, typically in the order of hours, whereas training the new
GMM-MRF model with the ICM algorithm achieves results in the order of minutes. For clinical applications, where decisions
need to be made in real time, this improvement in computational efficiency is important. We therefore conclude that the two
methods complement each other and should be used in combination: First run the proposed GMM-MRF model with the ICM
algorithm to get a first-pass prediction in real time, for preliminary clinical assessment, while running the HBM model in
parallel for refined follow-up diagnosis available at some later time (in the order of an hour). Our future work will focus on
including spatial correlation in the noise as a potential remedy to avoid some of the current artifacts [12].
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