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Abstract - Vaccine Adverse Event Reporting System (VAERS) is a national early warning system to detect possible safety issues in 

US licensed vaccines. However, the data mining task for VAERS is quite challenging mainly due to the high dimensionality of the data 

set and complex confounding presented among adverse events and vaccines. In addition, the inconsistent data quality and the rarity of 

cases and events add more difficulties to the analysis of VAERS data. Tan et. al. (2022+) [1] proposed a 3-step strategy to detect safety 

associated vaccines by using zero-inflated Poisson regression model with variable selection from VAERS. In this paper, I discuss the 

safety issue related with COVID-19 vaccines that were reported to VAERS from year 2020 to current with the implementation of a 

modified version of 3-step strategy. 
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1. Introduction 
Established in 1990 and co-managed by Centers for Disease Control and Prevention (CDC) and U.S. Food and Drug 

Administration (FDA), the Vaccine Adverse Event Reporting System (VAERS) is a post marketing surveillance program. 

VAERS collects information about adverse events (AEs), i.e., possible harmful side effects, that occur after administration 

of vaccines. This system is expected to serve as a national early warning system to detect possible safety problems in U.S.-

licensed vaccines [2]. VAERS reports are submitted by healthcare providers, manufacturers, vaccine recipients, and other 

sources. The data is publicly available, organized by year and updated every quarter. In a typical year, about 40,000 new 

reports are added into VAERS with about 3,000 different AEs, 70 vaccines involved, and 20 other variables, such as age, 

gender, hospitalization and so on. 

VAERS database is a unique information source for rapid signal detection of potential safety issues that could be 

further evaluated by other safety systems, such as CDC’s Vaccine Safety Datalink (VSD) [3]. However, being a passive 

data collection system, VAERS has limitations including reporting bias, inconsistent data quality and completeness, lack of 

control (unvaccinated) comparison group, all of which make VAERS inappropriate for assessing the causal relationship. In 

addition, the nature of high dimensionality, complex confounding, and rarity of events in VAERS data make it even harder 

to identify vaccines that maybe potentially alarming. 

 A number of methodology work has been developed to detect the signal of safety-vaccine association using VAERS 

or similar data ([4,5,6]). In particularly, Tan et. al. (2022+) [1] proposed a 3-step strategy to detect safety associated 

vaccines by using zero-inflated Poisson regression model with variable selection and illustrated the proposed method by 

analysing the VAERS data between years 2014 to 2019 as an example. 

Since FDA approved emergency use authorization (EUA) of the first COVID-19 vaccine in Dec. 2020, huge number 

of reports have been added to VAERS: 49,683 reports in 2020, 747,911 reports in 2021, and 78,617 in 2022 by March 11. 

Most of these reports (788,624 out of a total of 876,211 reports) involved COVID-19 vaccines that are currently approved 

in U.S. Hence, in the following part of this paper, I will discuss the safety issue related with COVID-19 vaccines that were 

reported to VAERS from year 2020 to current, via a modified 3-step strategy proposed above. 

 

2. Method 
In the 3-step strategy, the authors focused on identifying vaccines that are associated with hospitalization (yes/no and 

length of stay) in the VAERS data. The usage of this single outcome other than the other AEs is because that 
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hospitalization belongs to serious adverse events and is a more important clinical outcome than most of the other AEs. 

In addition, hospitalization reports tend to be more accurate and reliable compared with the other AEs. Consequently, 

in this analysis, I also focus on the outcome of hospitalization, especially the length of stay (LOS). 

Due to the challenges of rarity and high dimensionality in VAERS data, in the 3-step strategy, the authors first 

screened all AEs and vaccines by excluding variables with low occurrence (e.g., < 0.01%), and then used a 

computation efficiency vaccine-AE association method, such as Fisher’s exact test, to keep only vaccines and AEs that 

are associated. 

To further filter the vaccines and AEs that were identified from the above step, in the second step, the authors 

applied a univariate screening procedure to examine the association between a given vaccine (or AE) and outcome 

variable by using linear regression model (for LOS) and logistic regression (for hospitalization yes/no). In this step, to 

account for complicated dependence and confounding among AEs and vaccines, principal components (PCs) for AEs 

and for vaccines were obtained after removing low-occurrence ones, and the calculated PCs were added in the linear or 

logistic regression as covariates. 

In the final step, a zero-inflated Poisson (ZIP) model was implemented to connect LOS with filtered vaccines. In 

the literature, it is recommended to assume a Poisson distribution for LOS, or a zero-inflated Poisson (ZIP) model 

when a large portion of LOS has value of 0 [7,8]. Specifically, denote   (          ) as the LOS vector of n 

VAERS reports,    (             ) as the covariates in the ith report that are associated with the zero-part of the 

ZIP model, and    (             ) as the covariates in the ith report that are associated with the count-part of the 

ZIP model. For the ith report, a ZIP model, which can be viewed as a mixture model with two components, is 

constructed, as  

 

            ( )  (    )       (  )  (1) 

 

In equation (1),        ( ) represents a degenerated Poisson distribution with intensity rate 0,        (  ) 

denotes a Poisson distribution with a positive intensity rate. Here      (  )    
   with   as the unknown zero-part 

regression coefficients, and    (  )    
   with   as the count-part regression coefficient to be estimated. Note that 

two vectors    and    may contain common components. In the 3-step strategy,    and    are the same by including 

both vaccines and PCs for vaccines. A LASSO penalty [9] was also imposed on the regression coefficients in the 

above ZIP model at the end, so that to select significant vaccines. 

 

3. Results  
In this paper, the focuses are detecting associations between LOS and COVID-19 vaccines based on the VAERS 

reports from year 2020 to March 2022. During this time, there are in total of 876211 reports on 11775 AEs and 68 

vaccines, in which COVID-19 vaccines are separated by different brands (Janssen, Moderna, Pfizer-Biontech, and 

Unknown). Since the number of involved AEs and vaccines in this time period is smaller than previous years, and the 

main interested vaccines are COVID-19 vaccines, in the analysis, I used occurrence thresholds 1% for AEs and 0.05% 

for vaccines to keep 77 AEs and 32 vaccines after initial screening. Besides, due to vaccine-AE association is not 

primary focus here, the step of Fisher’s exact test for vaccine-AE association was skipped.  

To further filter vaccines, as suggested by the 3-step strategy, univariate screenings were conducted to test the 

association between a given vaccine and LOS and hospitalization (yes/no) by using linear and logistic regression, 

respectively. In both regression models, all 77 AEs and 4 PCs for vaccines (explaining >90% of total variance) were 

adjusted as covariates. The reason not using PCs for AEs is because that the dependency among AEs was not main 

interests here. Note, since vaccines are binary variables (1 for involved and 0 for not involved), the logistic PC method 

was used to obtain PCs [10,11]. In addition, permutation test was applied to get the significance of the association 

between outcomes and target vaccine. By using a cut-off value of 0.05, 27 vaccines (including all COVID-19 

vaccines) were retained after this step. 

Finally, the remained 27 vaccines, 4 vaccines PCs obtained from 32 vaccines that passed initial screening, and 

two other clinics variables, age and sex, were used for both B vector and G vector in the ZIP model (1). Note that 

variable age had a portion of missing values (~12%), I imputed it by the median age (50) among all reports during 

2020 to now. Similarly, a number of variable sex (~5.6%) was missing and denoted as Unknown in the analysis. In 
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addition, two reports that had outlier LOS (99999 days) were removed. So, at the end, a ZIP model was fitted by using 

876,209 reports with 33 variables. The fitting results for the final ZIP model are summarized in Table 1 below. 
Table 1: Results of ZIP model for 27 vaccines. 

  Logistic Model Part Poisson Model Part 

Freq Vaccine Estimate Std. P-value Estimate Std. P-value 

7.76% COVID-19 Janssen -0.97 0.128 3.52E-14 -0.49 0.044 < 2.00E-16 
41.06% COVID-19 Moderna -0.02 0.116 8.32E-01 -0.53 0.042 < 2.00E-16 

41.15% COVID-19 Pfizer -0.54 0.105 3.57E-07 -0.48 0.042 < 2.00E-16 

0.22% COVID-19 Unknown -1.24 0.162 2.12E-14 -0.58 0.066 < 2.00E-16 

0.17% DTAP -1.20 0.187 1.78E-10 -0.59 0.064 < 2.00E-16 

0.10% DTAPHE -1.19 0.204 5.96E-09 0.09 0.082 2.79E-01 

0.18% DTAPIPV -0.29 0.292 3.27E-01 -0.03 0.119 8.15E-01 

0.15% DTAPIPVHIB -0.86 0.190 5.67E-06 0.62 0.073 < 2.00E-16 

1.50% FLU 0.19 0.284 5.08E-01 -0.53 0.105 5.60E-07 

1.43% FLU4 -0.19 0.275 4.85E-01 0.13 0.101 2.05E-01 

0.06% FLUA3 -0.37 0.247 1.31E-01 -0.72 0.110 6.37E-11 

0.17% FLUA4 0.38 0.206 6.89E-02 -0.17 0.079 3.02E-02 

0.48% FLUX -0.22 0.275 4.33E-01 0.34 0.091 2.10E-04 

0.28% HEP -0.30 0.176 9.15E-02 -0.42 0.065 8.03E-11 

0.23% HIBV -0.46 0.183 1.19E-02 -0.58 0.073 1.42E-15 

0.43% HPV -0.88 0.252 4.98E-04 0.19 0.084 2.71E-02 

0.09% IPV -0.24 0.242 3.27E-01 2.30 0.046 < 2.00E-16 

0.20% MEN -0.30 0.232 1.98E-01 -0.04 0.089 6.16E-01 

0.33% MMR -1.35 0.190 9.92E-13 0.03 0.061 6.26E-01 

0.30% MMRV -0.99 0.263 1.62E-04 -1.61 0.149 < 2.00E-16 

0.29% MNQ -0.28 0.207 1.83E-01 -0.66 0.077 < 2.00E-16 

0.34% PNC13 -0.63 0.165 1.44E-04 -0.58 0.066 < 2.00E-16 

0.54% PPV 0.56 0.229 1.53E-02 -0.83 0.089 < 2.00E-16 

0.26% RV -1.92 0.167 < 2.00E-16 -0.83 0.062 < 2.00E-16 

0.12% TYP 2.22 0.716 1.90E-03 0.13 0.253 6.11E-01 

1.40% UNK 0.13 0.157 4.04E-01 0.03 0.054 6.06E-01 

3.16% VARZOS 1.50 0.156 < 2.00E-16 0.60 0.056 < 2.00E-16 

            

4. Conclusion  
Table 1 lists the frequency of each 27 vaccines involved among all 876209 reports. The first four rows in this table are 

the results for COVID-19 vaccines. It shows that Janssen and Pfizer-Biontech vaccines were negatively and significantly 

associated with being hospitalized (P-values = 3.52E-14 and 3.57E-07), and Moderna vaccine was not significantly 

associated with hospitalization (P-value=8.32E-01). Conditional on being hospitalized, all three brand COVID-19 vaccines 

were significantly associated with shorter hospital stay. The conclusions for the other 23 vaccines could be made similarly 

according to this table. 

However, due to the limitations of VAERS, the above analysis may only be used to flag the potential associations, but 

not causalities. Reliable interpretation of such findings based on VAERS is still quite challenging. The hope is that the 

proposed method and analysis results could help to shape new hypotheses which could be examined through other more 

reliable and appropriate data sources. 
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