Proceedings of the 4th International Conference on Statistics: Theory and Applications (ICSTA'22) Prague, Czech Republic – July 28- 30, 2022 Paper No. 149 DOI: 10.11159/icsta22.149

Jackknife Estimator Consistency for Nonlinear Mixture

Rostyslav Maiboroda¹, Vitaliy MIroshnychenko²

¹Taras Shevchenko National University of Kviv Volodymyrska str., 60, Kyiv, Ukraine mre@univ.kiev.ua; vitaliy.miroshnychenko@gmail.com ²Taras Shevchenko National University of Kyiv Volodymyrska str., 60, Kyiv, Ukraine

Extended Abstract

This paper continues our studies of the jackknife (JK) technique application for estimation of estimators' covariance matrices in models of mixture with varying concentrations (MVC) [2, 3]. On JK applications for homogeneous samples, see [1]. In MVC models one deals with a non-homogeneous sample, which consists of subjects belonging to M different subpopulations (mixture components). One knows the probabilities with which a subject belongs to the mixture components and these probabilities are different for different subjects. Therefore, the considered observations are independent but not identically distributed.

We consider objects from a mixture with various concentrations. All objects from the sample Ξ_n belongs to one of M different mixture components. Each object from the sample $\Xi_n = (\xi_j)_{j=1}^n$ has observed characteristics $\xi_j = (X_j, Y_j) \in \mathbb{R}^D$ and one hidden κ_j . $\kappa_j = m$ if *j*-th objects belongs to the *m*-th component. These numbers are unknown, but we know the mixing probabilities $p_{j;n}^m = P\{\kappa_j = m\}$. The X_j is a vector of regressors and Y_j is a response in the regression model

$$Y_i = g(X_i, b^{(\kappa_j)}) + \varepsilon_j. \tag{1}$$

Here $b^{(m)} \in \Theta \subseteq \mathbb{R}^d$ is a vector of unknown regression parameters for the *m*-th component, the $g: \mathbb{R}^{D-1} \times \Theta \to \mathbb{R}$ is a known regression function, ε_i is a regression error term. Random variables X_i and ε_i are independent and their distribution is different for different components.

The estimator $\hat{b}_n^{(k)}$ for the regression parameter $b^{(k)}$ is a measurable solution to the GEE equation

$$S_n^k(\gamma) = \sum_{j=1}^n a_{j;n}^k \left(Y_j - g(X_j, \gamma) \right) \dot{g}(X_j, \gamma) = 0.$$
⁽¹⁾

This equation might have more than one solution. Any of these solutions could be taken as $\hat{b}_n^{(k)}$ estimator. The symbol $\dot{g}(x,\gamma)$ means the gradient of function g by the γ term. $a_{j;n}^k$ are the minimax weights defined in [4]. The minimax weights matrix A_{jn} defined using the mixing matrix $P_{jn} = \left(p_{jn}^k\right)_{i=1}^{n,M}$:

$$A_{;n} = \left(a_{j;n}^{k}\right)_{j=1,k=1}^{n,M} = P_{;n} \left(P_{;n}^{T} P_{;n}\right)^{-1}.$$
(3)

In [3] it is shown that under suitable conditions $\hat{b}_n^{(k)}$ are asymptotically normal, i.e.

$$\sqrt{n}\hat{V}_{n}^{-\frac{1}{2}}\left(\hat{b}_{n}^{(k)}-b^{(k)}\right) \to^{W} N_{d}(0,E), \text{ as } n \to \infty.$$

$$= M^{(k)^{-1}} Var S_{n}^{k}\left(b^{(k)}\right) \left(M^{(k)^{T}}\right)^{-1}; M^{(k)} = -E\dot{S}_{n}^{k}\left(b^{(k)}\right).$$
(4)

 $v_n - w_n = v \, ar \, S_n^*(\mathcal{D}^{(\kappa)})(M^{(\kappa)}) \quad ; M^{(k)} = -E\dot{S}_n^k(b^{(k)}).$ Let us denote $V^{(k)} = \lim_{n \to \infty} \hat{V}_n$ as a limit covariance matrix. For the nonlinear functions g, the matrix $V^{(k)}$ could be estimated by the following JK-estimator

$$V^{K}\hat{V}_{n}^{(k)} = \sum_{j=1}^{n} \left(\hat{b}_{i-;n}^{(k)} - \hat{b}_{n}^{(k)}\right) \left(\hat{b}_{i-;n}^{(k)} - \hat{b}_{n}^{(k)}\right)^{T}.$$
 (5)

Here $\hat{b}_{i-n}^{(k)}$ are the regression parameter estimators build by the samples Ξ_{i-n} , which are the sample Ξ_n without *j*th object and matrices $A_{i-;n} = P_{i-;n} (P_{i-;n}^T P_{i-;n})^{-1}$. The matrix $P_{i-;n}$ is the matrix $P_{;n}$ without the *j*-th object.

Let us denote $s(\xi_j, \gamma) = (Y_j - g(X_j, \gamma)) \nabla g(X_j, \gamma)$.

Theorem Assume that following assumptions hold:

1. $b^{(k)}$ is an inner point of Θ . 2. $M^{(k)}$ is a finite and non-singular for all k = 1, ..., M. 3.The limits $\lim_{n \to \infty} n \sum_{j=1}^{n} a_{j;n}^{k} a_{j;n}^{m} p_{j;n}^{i} p_{j;n}^{l}$ exist for all k, m, l, i = 1, ..., M. 4.Matrix $\Gamma_{\infty} = \frac{1}{n} \lim_{n \to \infty} P_{;n}^{T} P_{;n}$ exists and non-singular. 5.There exists a function $h: \mathbb{R}^{D} \to \mathbb{R}$ such that $\sup_{\gamma \in \Theta} |s(x, \gamma)| \le h(x), \sup_{\gamma \in \Theta} |\dot{s}(x, \gamma)| \le h(x), \sum_{\gamma \in \Theta} |\dot{s}(x, \gamma)| \le h(x), \sum$

References

- [1] J. Shao and D. Tu, *The Jackknife and Bootstrap*, Springer-Verlag, 2012.
- [2] R. Maiboroda, O. Sugakova, *Jackknife covariance matrix estimation for observations from mixture*. Modern Stochastics: Theory and Applications, Vol.6, Iss.4 pp. 495 513, 2019.
- [3] V. Miroshnychenko and R. Maiboroda, *Asymptotic normality of modified LS estimator for mixture of nonlinear regressions*, Modern Stochastics: Theory and Applications, Vol.7, Iss.7 pp. 435 448, 2020.
- [4] R. Maiboroda and O. Sugakova, *Statistics of mixtures with varying concentrations with application to DNA microarray data analysis*. Journal of nonparametric statistics. 24, No 1 201-205 (2012).