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Extended Abstract  
This paper continues our studies of the jackknife (JK) technique application for estimation of estimators’ covariance 

matrices in models of mixture with varying concentrations (MVC) [2, 3].  On JK applications for homogeneous samples, see 

[1]. In MVC models one deals with a non-homogeneous sample, which consists of subjects belonging to 𝑀 different sub-

populations (mixture components). One knows the probabilities with which a subject belongs to the mixture components and 

these probabilities are different for different subjects. Therefore, the considered observations are independent but not 

identically distributed.  

We consider objects from a mixture with various concentrations. All objects from the sample Ξ𝑛 belongs to one of M 

different mixture components. Each object from the sample 𝛯𝑛 = (𝜉𝑗)𝑗=1
𝑛

has observed characteristics 𝜉𝑗 = (𝑋𝑗, 𝑌𝑗) ∈ ℝ𝐷 

and one hidden 𝜅𝑗. 𝜅𝑗 = 𝑚 if 𝑗-th objects belongs to the 𝑚-th component. These numbers are unknown, but we know the 

mixing probabilities 𝑝𝑗;𝑛
𝑚 = 𝑃{𝜅𝑗 = 𝑚}. The 𝑋𝑗 is a vector of regressors and 𝑌𝑗 is a response in the regression model 

     𝑌𝑗 = 𝑔(𝑋𝑗, 𝑏
(𝜅𝑗)) + 𝜀𝑗 .     (1) 

Here 𝑏(𝑚) ∈ Θ ⊆ ℝ𝑑 is a vector of unknown regression parameters for the 𝑚-th component, the 𝑔:ℝ𝐷−1 × Θ → ℝ is a 

known regression function, 𝜀𝑗   is a regression error term. Random variables 𝑋𝑗  and 𝜀𝑗 are independent and their distribution 

is different for different components. 

The estimator �̂�𝑛
(𝑘)

 for the regression parameter 𝑏(𝑘)  is a measurable solution to the GEE equation 

    𝑆𝑛
𝑘(𝛾) = ∑ 𝑎𝑗;𝑛

𝑘𝑛
𝑗=1 (𝑌𝑗 − 𝑔(𝑋𝑗 , 𝛾)) 𝑔 (𝑋𝑗, 𝛾) = 0.   (2) 

This equation might have more than one solution. Any of these solutions could be taken as �̂�𝑛
(𝑘)

 estimator. The symbol 

𝑔 (𝑥, 𝛾) means the gradient of function 𝑔 by the 𝛾 term.  𝑎𝑗;𝑛
𝑘  are the minimax weights defined in [4]. The minimax 

weights matrix 𝐴;𝑛 defined using the mixing matrix 𝑃;𝑛 = (𝑝𝑗;𝑛
𝑘 )

𝑗=1,𝑘=1

𝑛,𝑀
: 

     𝐴;𝑛 = (𝑎𝑗;𝑛
𝑘 )

𝑗=1,𝑘=1

𝑛,𝑀
= 𝑃;𝑛(𝑃;𝑛

𝑇𝑃;𝑛)
−1
.     (3) 

 In  [3] it is shown that under suitable conditions �̂�𝑛
(𝑘)

 are asymptotically normal, i.e. 

    √𝑛�̂�𝑛
−
1

2 (�̂�𝑛
(𝑘)

− 𝑏(𝑘)) →𝑊 𝑁𝑑(0, 𝐸), as n → ∞.     (4) 

𝑉�̂� = 𝑀(𝑘)−1𝑉𝑎𝑟 𝑆𝑛
𝑘(𝑏(𝑘)) (𝑀(𝑘)𝑇)

−1

;  𝑀(𝑘) = −𝐸S n
𝑘(𝑏(𝑘)). 

Let us denote 𝑉(𝑘) = lim
𝑛→∞

�̂�𝑛 as a limit covariance matrix. For the nonlinear functions 𝑔, the matrix 𝑉(𝑘) could be 

estimated by the following JK-estimator 

    𝐽𝐾�̂�𝑛
(𝑘)

= ∑ (�̂�𝑖−;𝑛
(𝑘) − �̂�𝑛

(𝑘)) (�̂�𝑖−;𝑛
(𝑘) − �̂�𝑛

(𝑘))
𝑇

𝑛
𝑗=1 .    (5) 

Here �̂�𝑖−;𝑛
(𝑘)

 are the regression parameter estimators build by the samples Ξ𝑖−;𝑛, which are the sample Ξ𝑛 without 𝑗-

th object and matrices 𝐴𝑖−;𝑛 = 𝑃𝑖−;𝑛(𝑃𝑖−;𝑛
𝑇 𝑃𝑖−;𝑛)

−1
. The matrix 𝑃𝑖−;𝑛 is the matrix 𝑃;𝑛 without the 𝑗-th object. 
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Let us denote 𝑠(𝜉𝑗, 𝛾) = (𝑌𝑗 − 𝑔(𝑋𝑗, 𝛾)) ∇𝑔(𝑋𝑗, 𝛾). 

Theorem Assume that following assumptions hold: 

1. 𝑏(𝑘) is an inner point of Θ. 

2. 𝑀(𝑘) is a finite and non-singular for all 𝑘 = 1,… ,𝑀. 

3. The limits lim
𝑛→∞

𝑛∑ 𝑎𝑗;𝑛
𝑘 𝑎𝑗;𝑛

𝑚 𝑝𝑗;𝑛
𝑖 𝑝𝑗;𝑛

𝑙𝑛
𝑗=1  exist for all 𝑘,𝑚, 𝑙, 𝑖 = 1,… ,𝑀. 

4. Matrix Γ∞ =
1

𝑛
lim
𝑛→∞

𝑃;𝑛
𝑇 𝑃;𝑛 exists and non-singular. 

5. There exists a function ℎ:ℝ𝐷 → ℝ such that sup
𝛾∈Θ

|𝑠(𝑥, 𝛾)| ≤ ℎ(𝑥), sup
𝛾∈Θ

|𝑠 (𝑥, 𝛾)| ≤ ℎ(𝑥), sup
𝛾∈Θ

|𝑠 (𝑥, 𝛾)| ≤ ℎ(𝑥), 

and moreover, ∃𝐸 (ℎ(𝜉(𝑚)))
𝛼
< ∞, for 𝛼 > 4 and 𝑚 = 1,… ,𝑀. 𝜉(𝑚) is a r.v. related to the 𝑚-th component. 

6. �̂�𝑛
(𝑘)

 is a √𝑛-consistent estimator of 𝑏(𝑘). 

7. sup
𝑖=1,…,𝑛

|�̂�𝑖−;𝑛
(𝑘)

− 𝑏
(𝑘)
| →𝑃 0 as 𝑛 → ∞. 

Than 

    𝐽𝐾�̂�𝑛
(𝑘)

− 𝑉(𝑘) →𝑃 0, as 𝑛 → ∞.       (6) 
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