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Abstract -A number of methodologies have been developed for investigation of the association between human health and 

exposure to a single pollutant [e.g., 1]. However, as pollutants are correlated, and the joint effect of pollutants is of high 

interest, work continues on development for multiple pollutant models. In this work, we discuss a method using Thin Plate 

Splines (TPS) to simultaneously model both PM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter) and O3 

(ozone) in association with human mortality. The results are compared to effect estimates obtained from single pollutant 

models. We find similar temporal trends in the estimates, with large movements in both PM2.5 and O3 being captured in the 

TPS estimates. The estimated errors for the TPS method are larger than the individual models combined and produce risks 

that are comparable but slightly elevated. 

 

Keywords: Environmental Epidemiology; Air Pollution; Human Health; Generalized Additive Models; Multivariate 

Models; Thin Plate Splines 

 

1. Introduction 
Particulate matter (PM) has become one of the primary pollutants of interest for global health studies due to its evidenced 

relationship with human health effects (e.g., [2, 3]). In particular, evidence of association due to both short (acute) and long-

term exposures of ambient air pollution on cardiovascular and respiratory health impacts has been examined and found to be 

significant [1]. More recently, studies examining human health effects associated with multiple pollutants simultaneously 

has been investigated, as a more realistic framework for actual exposure. Several recent attempts (and successes) include [4-

6], where the two project teams explored models, mostly in Bayesian frameworks, for assessing the statistical effect of 

multiple air pollution constituents and unknown numbers of major sources. In this work, we explore the development of a 

multiple pollutant method that includes multiple, possibly correlated, pollutants (in this case, particulate matter with a 

diameter less than 2.5 μm (PM2.5) and ozone (O3)) with the use of a response surface, and thin plate splines. 

 
2. Data 

In Canada, the National Air Pollution Surveillance (NAPS) database, organized and gathered by Environment and 

Climate Change Canada [7] contains, among many pollutant measures, airborne particulate matter from a large number of 

stations. Pollutants are measured hourly by the instrumentation. For these acute risk studies, their concentration is aggregated 

to 24 hour mean concentration by geographic region, called a census division (CD), to act as a ecological proxy for the 

population-level exposure. In this process, missing days are imputed. For this study, measurements of PM2.5 and O3 across 

53 census divisions are obtained. In addition to pollutant concentrations, daily temperatures measured by the Meteorological 

Service of Canada climate database [8] were obtained. The daily temperatures were aggregated to a daily measurement by 

census division, across multiple observing stations, as available. Imputation of missing data was not performed.  

The PM2.5, O3 and temperatures for Toronto, ON, a large urban area with a population of almost 3 million, is shown in 

Figure 1. There are seasonal ozone and temperature patterns, where in the warmer season (May – October) ozone 

concentrations are higher. Patterns can also be seen for the PM2.5 concentrations. An increase of concentrations in warmer 

seasons is a consequence of atmospheric chemical formation, where O3 forms from nitrogen oxides via solar radiation, a 

process that largely occurs above 17oC [1]. These patterns, and hence correlation, between pollutants compel our exploration 

into the development of a multi pollutant model that controls for confounding. They are seen across all census divisions in 
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the study. Note that a naive Pearson correlation between the two gives mild correlation only, but careful examination of 

the time series structure makes it clear that there are deeper relationships – these pollutants cannot be considered 

independent. 

 

 

Figure 1: Daily pollutant and temperature measurements for Toronto, ON census division. 

 

3. Single Pollutant Model 
We will begin by exploring the single pollutant model, as developed by Dominici et al. originally [9]. In this model, 

Generalized Additive Models (GAMs) are used to estimate the annual risk. As counts, the natural family is Poisson, so 

the logarithm of the daily human mortality (health effect) are modelled by the pollutant of interest, a smooth function of 

time (Discrete Prolate Spheroidal (Slepian) Sequences with 6 or 12 degrees of freedom per year, [10]), temperature and 

the day of week. This can be formally written as: 

 

𝒍𝒐𝒈(𝝁) = 𝜷𝟎 + 𝜷𝟏 ∗ Pollutant + 𝒔𝟏(Time, df = 6 or 12/year) + 𝒔𝟐(Temperature)
+ DOW 

(1) 

where μ is the mean response, β0 and β1 are linear coefficients, s1 and s2 are smooth functions of time and temperature, 

DOW is the day of week and pollutant is the pollutant concentration of interest. A cut-off of 50% is used as the 

threshold for missing data (for both daily observations of pollutant concentrations and daily morbidity or mortality 

counts). For these models, we use an identity function for s2, as in [11]. In both these models, and the multiple pollutant 

models that follow, there is a choice of seasonality possible: that is, are all days used in the estimate (annual estimate, 

so January – December), or are the days restricted to the “cold” or “warm” seasons prevalent in the Canadian climate 

(October – March or April – September).  
             

4. Multiple Pollutant Model 
 
4.1. Brief Introduction to Thin Plate Splines (TPS) 

A method to model multiple correlated pollutants (in this case, PM2.5 and O3) was developed using response surface 

and thin plate spline bases. Thin plate splines [12] are a smooth function of one or more predictor variables, such that 

the response surface of the spline models the combined effect of multiple predictors. They do not require prior 

knowledge about the relationship between predictors or specification of knot locations. This flexibility motivates its use 

in modelling confounding pollutants.   
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4.2. TPS Model 

To incorporate multiple pollutants, the single pollutant model is adjusted to incorporate a TPS and is written as: 

 

 

𝒍𝒐𝒈(𝝁) = 𝜷𝟎 + 𝜷𝟏 ∗ 𝒔𝑻𝑷𝑺(Pollutant𝟏, Pollutant𝟐 + 𝒔𝟏(Time, df = 6 or 12/year)
+ 𝒔𝟐(Temperature) + DOW 

 

(2) 

where sTPS is the thin plate spline, and the smooth functions are the same as Eqn. (1). In this approach, the location on the 

response surface (after accounting for the temperature and a smooth function of time) that corresponds to the average of a 

particular pollutant concentration, and this location (average) plus one unit (e.g., ppb) can be determined. In traditional 

models, the result of interest for these models (e.g., a β1) is geometrically interpreted as a slope, so we replicate this in the 

context of the bivariate surface as one of three quantities of interest: the slope of each pollutant at the location of the bivariate 

average, in the direction of a unit increase in that pollutant; and the slope of the pollutants jointly in the direction of their 

joint unit increase (taken to be equal contribution, so an increase of 1 unit in a bisecting angle to the two pollutant axes). This 

approach has the advantage that the interpretation stays the same as the univariate models, allowing easy comparison of the 

magnitudes and temporal trends. 

The thin plate spline surface of the residual mortality is visualized in Figure 2. Grids in the centre plot are used to show 

the cross sections (planes corresponding to the average PM2.5 and O3 concentrations). In Figure 2, left, the residual mortality 

TPS is plotted against the O3 concentration while the PM2.5 concentration is held at its mean value, 23.49 μg m-3, while the 

right shows the TPS residual response surface versus PM2.5 concentration while the O3 concentration is held at its mean value 

of 9.12 μg m-3.  

 
4.3. Comparison of single and multiple pollutant model 

The cardiovascular and respiratory mortality estimates from the thin plate spline (TPS) approach were compared to 

the single pollutant models (Figures 3-6) from 1997 to 2019 for Toronto, Vancouver, Edmonton and Ottawa, all million-

Figure 2: Thin Plate Spline residual mortality and cross-sectional plots at the average pollutant concentrations. Each of the single pollutant 

plots shows the surface and the prediction interval along that pollutant’s axis, with the other pollutant fixed at its arithmetic overall average value. The 

response visualized here is the residual log mortality after accounting for temperature, DOW and the smooth function of time. 
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plus population urban areas in Canada. For the univariate estimates, the smooth function of time was a DPSS 

(Slepian) spline with 12 degrees of freedom per year. In general, large increases and decreases in PM2.5 and O3 are 

captured in the TPS estimates. The TPS approach has significantly larger prediction error than either of the two 

individual models, or their additive combination. This is not entirely surprising, as the correlation structure of the 

two pollutants is known to vary over time due to component-level correlations between the respective elements of 

the series. In particular, the cross-sectional location of the prediction estimate varies year-to-year, as the annual 

averages of the PM2.5 and O3 vary. Control of this error in a more coherent way is a current open question. 

  

 
Figure 3: Mortality risk estimates from single and multiple pollutant model estimates Toronto, ON for: all seasons (January – December), cold season 

(October – March) and warm season (April – September). 
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Figure 4: Mortality risk estimates from single and multiple pollutant model estimates Greater Vancouver, BC for: all seasons (January – 

December), cold season (October – March) and warm season (April – September). 

 

Figure 5: Mortality risk estimates from single and multiple pollutant model estimates Edmonton, AB for: all seasons (January – December), 

cold season (October – March) and warm season (April – September). 
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Figure 6: Mortality risk estimates from single and multiple pollutant model estimates Ottawa, ON for: all seasons (January – December), cold 

season (October – March) and warm season (April – September). 

 
 

4. Conclusion 

Particulate matter is one of the primary pollutants of interest for global health studies, and estimation of multiple 

pollutants simultaneously, with one of these being PM, is a problem of high research interest. In this work we have 

begun development of a multiple air pollutant model that builds a multiple dimension surface for the association between 

the pollutants simultaneously and a human health effect response. The mean association, jointly, between the two 

pollutants is quite similar to the average of two univariate models, but is not identical, demonstrating that modeling both 

simultaneously does have some value. The use of thin-plate splines is quite flexible, and could allow for further work to 

more carefully model the correlation and association structure of the pollutants, rather than treating them as simple 

bivariate contributors. The extraction of univariate ‘slices’ from the bivariate surface is also a technique that 

demonstrates promise, as these extracted slices are comparable in form to non-linear modeling outputs for the impact of 

air pollution on human health. In conclusion, this new method shows promise, and allows a new viewpoint on a modeling 

problem which is of high interest to a broad global community. 
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