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Abstract - In this study, a method has been developed to improve the resolution of histological human placenta images. For this 

purpose, a paired series of high- and low-resolution images have been collected to train a deep neural network model that can predict 

image residuals required to improve the resolution of the input images. A modified version of the U-net neural network model has 

been tailored to find the relationship between the low resolution and residual images. After training for 900 epochs on an augmented 

dataset of 1000 images, the relative mean squared error of 0.003 is achieved for the prediction of 320 test images. The proposed 

method has not only improved the contrast of the low-resolution images at the edges of cells but added critical details and textures that 

mimic high-resolution images of placenta villous space.  
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1. Introduction 
Placenta is a vital organ that develops during the pregnancy to provide a medium for exchanging oxygen and nutrients 

between mother and fetus [1]. Micro-structure of internal placental tissues is an important feature in developing a healthy 

fetus [2]. These tissues have been widely investigated by sampling chorionic villus via biopsy and preparing histological 

slides [3]. However, sometimes histological images do not have either the required quality suitable for pathological 

examinations or cell counting. This study presents a simplified approach to improve the quality of the placenta histological 

images using deep learning. Although deep learning has been widely used for analysis [4] and quantification of placenta 

histological images, quality improvement techniques for these images have not been yet practiced.  

 

2. Material and Method 
2.1. Image dataset 

In this study, deep artificial neural networks have been used to improve the quality of the histological placenta 

images. Required data for training and test purposes have been acquired from the virtual microscopy database [5] donated 

by the University of Michigan. The utilized H&E-stained images [6] belong to two healthy volunteers and are sub-

sampled from the fetal zones where villous space is visible. Images have been captured at 40X magnification in which 

many different cell types are clearly visible and distinguishable. In these images, boundaries of blood cells are clearly 

visible as well as villous membrane cells. However, this is not the case in many of the publicly available dataset of human 

placenta images. To train a quality improvement model, we deliberately decrease the resolution of our high-resolution 

dataset and use it as a feed for a deep learning structure. For this purpose, cubic interpolation has been implemented to 

resample the images into a quarter of their original size. Then, using the same approach, images are brought back to the 

original size, but with a considerable amount of loss in details in the transformation process. Such artificial low-resolution 

images are assumed to mimic original low-resolution images that have been captured using a lower magnification or when 

adequate visual definition is lacking. A dataset of 32 images, (16 from each of the healthy volunteers) with the size of 

1024×1524 have been augmented by random cropping and flipping to 1320 images with the size of 512×512 pixels. From 

this dataset, 1000 images have been used for training and 320 images have been used for test purposes.  
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2.2. Model structure 
The deep learning model employed in this study is a tailored version of the U-net [7] with 4 down-sampling and 

4 up-sampling steps. At each step, two consecutive convolutions with the filter size of 3×3 and same-size padding are 

used with Exponential Linear Unit [8] activation function and He Normal kernel initializer [9]. Depth of the 

convoluted layers increases from 16 to 256 as multiplied by 2 in each of the down-sampling steps. In addition, a 2×2 

max-pooling filter with the stride size of 2×2 is used to shrink the size of the image in each of the mentioned steps.  

Input and output images have the same dimensions of 512×512 pixels with 3 colour channels of red, green, and 

blue. The output image is designed to be the pixel-wise difference between the low- and high-resolution images. It is 

noteworthy that for practical convenience, the pixel values of the output residual image are shifted to be positive 

integers between 0 and 255, with the value of 127 representing no change and it is identified by grey colour. 

Accordingly, darker shades than the dominant grey denote a reduction in the average intensity of pixels and lighter 

shades represent a required increment of the pixel intensities. Fig. 1 illustrates the structure of the deep learning 

model, input and output images, and a sample reconstruction of a high-resolution image by pixel-wise addition of the 

low-resolution image and the predicted residual.  

 
Fig. 1: Structure of the deep learning model including sample input and output images (a), an example of reconstructing a high-

resolution image using a predicted residual image by pixel-wise summation (b). (N is the dimension of the input image in pixels and 

equal to 512.)  

 

3. Results and Conclusions 
Using the proposed method, the described deep learning model is trained for 900 epochs with a batch size of two. 

The stopping criterion for this training is “no improvement in training accuracy after 100 epochs”. The loss function 

used for training is binary cross-entropy [10] with a learning rate of 0.001, minimized via the Adam optimization 

technique [11]. The relative mean square error when predicting the training and testing datasets are 0.002 and 0.003, 

respectively. The trained model and related developed codes are written in Python using the Tensorflow package with 

Keras back-end and are available at a GitHub repository.  (www.github.com/ArashRabbani/PlacentaSR).  

 

http://www.github.com/ArashRabbani/PlacentaSR
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Fig. 2: An example of resolution improvement with plotted red channel intensities from point A to B on both low-resolution 

and reconstructed high-resolution images.   

 
Fig. 3: Two examples of prediction from test dataset including, low-resolution image, reconstructed high-resolution image, grand truth 

high-resolution image, predicted residual and residual ground truth. The central section of all images has been magnified for better 

visualization of the slight differences.  

 

Fig. 2 represents a sample reconstruction of a high-resolution image based on a low-resolution input in addition to 

visualization of the red channel intensity variations. As it can be seen, when moving from point A to B on the graph, the 
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red channel intensity of both images follows the same pattern, but with two differences. The reconstructed image has 

more intensified signals compared to the low-resolution image. In addition, some extra details have been added to the 

high-resolution image by the deep learning model that gives a better representation of the texture of the placenta 

villous space. In the reconstructed high-resolution image, cells are more distinguishable and consequently more 

suitable for pathological analysis if needed. 

As another visual presentation, Fig. 3 illustrates two examples of image resolution improvement based on two 

test images from two different healthy volunteers named cases #1 and #2. As it can be seen in both cases, image 

quality has improved to the level that the reconstructed high-resolution image is almost identical ot the ground truth 

image based on a visual comparison. Also, the predicted residual is adequately similar to its ground truth.  

Based on the achieved resemblance between the images, the presented method in this study is suggested to be 

used prior to manual or machine-based analysis of placenta histological images, especially in the cases where image 

quality is a limitation. In our studied cases, the trained model can improve the image quality approximately from 20X 

magnification to 40X magnification. The method does not only sharpen the edges and intensified the weak signals but 

also creates local details and textures within the villous space as they exist in an original high-resolution image.  
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