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Abstract - This paper proposes methods to obtain difference among subjects by using the degree of reliability of each subject based 

on the results of fuzzy clustering and multidimensional scaling (MDS). In addition, new fuzzy clustering and MDS, including the 

weights of reliability scores, are proposed to classify subjects. When we observe data consisting of values of objects with respect to 

variables, and such data are observed over multiple subjects, capturing the difference among subjects is important in many fields. In 

this paper, the degree of reliability is obtained through the optimality of convex clustering. Based on this idea, it is shown that the same 

difference over the subjects can be obtained, regardless of the difference in obtained latent structures, which are the result of dynamic 

fuzzy clustering and the result of MDS by a numerical example. From this, we show the robustness of the proposed reliability 

concerning the variety of the obtained latent structures of data.  
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1. Introduction 
Systems based on the user’s personal specifications are regarded as necessary in various fields such as long-term care, 

education, and medical care. Particularly in recent years, how these systems can be effectively used in human life is 

important for enriching the digital society of the future. In order to realize such a system, it is necessary to extract easily 

and quickly the difference between subjects from the obtained data and apply the difference efficiently to the results of 

analysis of the data to improve the result. For example, recently, we obtained many kinds of data of objects with respect to 

variables through several subjects. Several persons (subjects) wore sensor units on their bodies and did the same daily 

activity for a period of time. Then we can obtain data that consists of times (objects) in the period, measurement attributes 

(variables) of the sensors, and several subjects. When we implement a system to assist daily movement for a subject, it 

would be useful to learn the difference of the observed data among the subjects easily and quickly to improve the 

individually different results of analysis of the data. Such a system will be useful for adjusting the elderly user-friendly 

assistance system for daily activities considering the user’s differences, such as a custom-made system. 

Therefore, this paper proposes weighted individuality-based fuzzy clustering and MDS. In both of these, weights 

showing the degree of reliability for the obtained latent structures resulting from dynamic fuzzy clustering for each subject 

and the result of MDS for each subject are defined using the idea of the objective function of convex clustering. [1] 

Usually, the objective function [2], [3] is used to obtain a clustering result. However, in this study, conversely, the 

clustering result is given in the objective function as the latent structure of data, which is a result of dynamic fuzzy 

clustering [4] or a result of MDS [5], [6], [7]  for each subject to measure how much each latent structure of each subject 

fits the optimality of convex clustering. Then, the score of the objective function can show the degree of reliability for the 

obtained latent structures of data at each subject, such as the result of the dynamic fuzzy clustering and the result of the 

MDS at each subject. Therefore, by including these scores as the degree of reliability of the original results, we can 

improve the results by considering the individual difference over the subjects.  

The values of the reliability scores are mathematically comparable in the same criterion based on the objective 

function of convex clustering, so we can investigate the robustness of individual scores by using different methods, such as 

dynamic fuzzy clustering or MDS, in indicating differences among subjects. A numerical example shows a better 

performance of the robustness of the proposed degree of reliability for the difference of the latent structures obtained from 

data over the subjects.  
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 This paper consists as follows: In section 2, we describe the dynamic fuzzy clustering and related ordinary fuzzy 

clustering methods. [4], [8], [9] In section 3, metric multidimensional scaling is described. [5], [6], [7] In section 4, the 

definition of the degree of reliability is described [1], and methods for obtaining the results of the fuzzy clustering and 

multidimensional scaling (MDS), which show the difference among the subjects, are proposed. In section 5, numerical 

examples using the proposed methods are explained, and in section 6, several conclusions are described.  

 

2. Fuzzy Clustering 
Suppose   be a given data matrix consisting of   objects and   variables as follows: 

  (

       

   
       

)  (

  

 
  

)     (         )            (1) 

where,    shows a vector for an object  . The purpose of clustering is to classify the   objects in (1) into   clusters. The 

state of fuzzy clustering is represented by a partition matrix:  

  (   )                      

where     shows the degree of belongingness of an object   to a cluster  . In general,     satisfies the following conditions:  

    [   ]     ∑    

 

   

    (2) 

The fuzzy c-means (FCM) method [8] is one of the methods of fuzzy clustering. The purpose of this clustering method is 

to obtain solutions    and    (         )         which minimize the following weighted within-class sum of 

squares:  
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where    (         ) denotes the values of the centroid of a cluster  ,    (         ) is  -th object, and   (     ) 

is the square Euclidean distance between    and   . The exponent   which determines the degree of fuzziness of the 

clustering is chosen from (   ) in advance. By minimizing (3), we obtain the solutions   and         as follows: 
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Suppose    be a given data matrix consisting of   objects with respect to   variables at a subject   called a 3-way data and 

shown as follows:  

   (   
( ))                           (4) 

To obtain the same clusters over the   subjects, the following      super matrix  ̃ is created. 

 ̃  (
  

 
  

)  ( ̃  )                           (5) 

The purpose of the dynamic fuzzy clustering [4] is to classify the    objects into   clusters. The state of the fuzzy 

clustering is represented by a partition matrix: 

 ̃  (
  

 
  

)  ( ̃  )    (   
( ))                                    (6) 

where  ̃   is a degree of belongingness of an object   which is shown as  ̃  ( ̃      ̃  ) to a fuzzy cluster   and     
( )

 is a 

degree of belongingness of an object   to the same fuzzy cluster   at a subject  . From (6), the obtained   fuzzy clusters are 

the same over   subjects. In general,  ̃   satisfies the following conditions: 

 ̃   [   ] ∑  ̃  

 

   

              (7) 
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Then objective function of dynamic fuzzy clustering is defined by using FCM as follows: 

 ( ̃        )  ∑∑ ̃  
 

 

   

  

   

  ( ̃    )   (8) 

where    (         ) denotes the values of the center of a cluster  ,   ( ̃    ) is the squared Euclidean distance 

between  ̃  and   . The exponent   that determines the degree of fuzziness of the clustering is chosen from (   ) in 

advance. By minimizing the objective function in (8) under the conditions in (7), we obtain the solutions  ̃        . 

If observed data is dissimilarity data,   (   ), where     shows dissimilarity between objects   and  , we use a fuzzy 

clustering method named FANNY algorithm. [9] The objective function of FANNY algorithm is defined as follows: 
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By minimizing (9) under the conditions in (2), we obtain the solution  . 

 

3. Multidimensional Scaling 
From (1), when we assume that there are   objects denoted by   vectors in   dimensional space, the purpose of the 

Multidimensional scaling (MDS) is to obtain n points in a r (r < p) lower dimensional space with holding approximately 

the same similarity (or dissimilarity) relationship among objects in the p dimensional space. Then we can reduce the 

number of dimensions for capturing efficient information from observed data by representing the data structure in a lower 

dimensional spatial space. As a metric MDS, the following model has been proposed.  

    {∑( ̃    ̃  )
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                     (10) 

In (10),  ̃   is a point of an object   with respect to dimension   in    (   ) dimensional configuration space.     is an 

error. If we observe data of objects with respect to variables in (1), then the dissimilarity,    , is usually calculated by using 

Euclidean distance between objects   and   as follows: 

    {∑(       )
 

 

   

}

 
 

                (11) 

and apply the calculated dissimilarity in (11) to the MDS model in (10). That is, MDS finds    dimensional scaling 

(coordinate) ( ̃      ̃  ) and throws light on the structure of similarity relationship among the objects by representing the 

    in (10) as the distance between a point ( ̃      ̃  ) and a point( ̃      ̃  ) in   dimensional space. Suppose       

     in (10), then (10) can be rewritten as follows: 

          ( ̃ ̃ )   ( ̃ ̃ )      ( ̃ ̃ )     (12) 

where   is a      matrix whose (   ) element is    
 , and   is a vector whose   elements are all 1, and  ̃ is a     matrix 

whose(   ) element is  ̃  , that is,    (   
 ),   (     ) ,  ̃  ( ̃  )                  , and     ( ) means a 

diagonal matrix whose diagonal elements are consisted of diagonal elements of  . From the well-known Young-

Householder transformation [10], which is a foundation of the MDS,     in (12) can be transformed as follows: 

   
 

 
      ̃ ̃    (13) 

where   (   )          . Matrix   is a symmetric matrix whose diagonal elements are       and non-diagonal 

elements are      which means centering operation for each column of  ̃, that is the following condition 

∑ ̃  

 

   

        

is satisfied to fix an origin as   for all   dimensions in the obtained coordinate space. By using eigenvalue decomposition 

of   in (13),   can be represented as follows: 
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where   (   )  (       )    (         )
           , and   is a diagonal matrix whose diagonal elements 

are eigen values         and satisfy        .  
 

  is a diagonal matrix whose diagonal elements are eigen 

values√     √  .   is a matrix whose column vectors are eigen vectors         corresponding to eigen values 

       . When        and eigen values           are close to  , that is, dimensions     to   do not have 

explanatory power for the given dissimilarity data, (14) can be approximately represented as follows by using fewer   

dimensions: 

        ̃ ̃ ̃   ̃ ̃
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where  ̃  (   )  (       )                , and  ̃ is a diagonal matrix whose diagonal elements are eigen 

values        .  ̃
 

  is a diagonal matrix whose diagonal elements are eigen values √     √  . From (13) and (15),   ̃ 

can be estimated as follows: 

 ̂   ̃ ̃
 
     (16) 

where  ̂  ( ̂  )                , and the elements of   ̂ show values of coordinate of   objects in   dimensional 

space when       . Therefore, the elements of  ̂ in (16) are the estimate of   ̃   in the model of MDS in (10). 

        

4. Weighted Individuality-Based Fuzzy Clustering and Multidimensional Scaling  
Convex clustering is a type of clustering method in which we obtain clustering results by solving a convex 

optimization problem. The idea is based on the sparsity regularization of regression. [11] 
Suppose    be a centroid for the cluster containing    shown in (1) as follows:  
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)  (

  

 
  

)     (         )           

The purpose of convex clustering is to obtain    which minimizes the following function: 
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In (17),   (     ) is the square Euclidean distance between    and    and   (     ) is the square Euclidean distance 

between    and   .   is a given parameter in which if    , then we simply obtain a solution as         , that is, we 

obtain   clusters in which only one object belongs to one cluster. If    , then we obtain one cluster containing all 

objects. When we obtain the optimum solution, several values of the square Euclidean distances between a pair of 

centroids are zeros. For example, if   (     )   , then    and    belong to the same cluster. This shows a merging 

process of the clustering. 

Suppose we observe 3-way data in (4). Then based on the objective function of convex clustering in (17) when    , the 

weight of subject   based on a result of dynamic FCM is defined as follows [1]: 
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where   
( )

 (   
( )      

( )) in (4) is a data of an object   at  -th subject and   
( )

 (   
( )      

( )) is a result of dynamic 

FCM for an object   at  -th subject when     in (6), when we apply data  ̃ in (5) to the dynamic fuzzy clustering method 

in (8).  

Next, we define the weight of subject   based on a result of MDS as follows [1]: 
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where and  ̂ 
( )

 ( ̂  
( )    ̂  

( )) is a result of MDS for an object   at  -th subject in (16) when     in the case when we calculate 

Euclidean distance between objects for each subject   by using     in (4), and apply to the MDS in (10). 
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In  (18) and (19),    (
  

( )
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) and  ̂( )  (
 ̂ 
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 ̂ 
( )

) are representative of  -th subject obtained from different latent 

structures of the data, respectively, and the values of     
( )

 and  ̃   
( )

 show how much the representative of  -th subject fits 

the original each subject’s data which is shown as    in (4), and how much the representative shows well-classified status 

as the optimality of the convex clustering. That is, smaller values of     
( )

 and  ̃   
( )

 mean that the obtained latent 

structures as the results of the dynamic fuzzy clustering and MDS for the subject   has higher reliability to the real data at 

the subject  .  

Moreover, we can compare values for each pair (    
( )

  ̃   
( )

)        . From this, we can investigate the 

robustness of the weights in indicating differences among subjects, by using different representatives, which are different 

latent structures,    and  ̂( ) from the same subject  . Then the difference between    and      which are data for subjects   
and    in (4) is calculated as follows: 
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                          (20) 

We normalized the dissimilarity in (20) and obtain the normalized dissimilarity as  ̅  (  ̅  ). To avoid negative values in 

 ̅  (  ̅  ), we recalculate as follows: 

 ̃  ( ̃   )  ̃      ̅      (   
    

  ̅  )                       (21) 

where    ( ) means absolute value of  . By applying  ̃ in (21) to FANNY in (9), we obtain the result of the FANNY as 

follows: 

 ̂  ( ̂  )                  (22) 

under the conditions as follows: 

 ̂   [   ]     ∑  ̂  

 

   

    (23) 

where  ̂   shows a degree of belongingness of a subject   to a cluster  . However, the result in (22) does not consider the 

degree of reliability for each subject to match the individually different data structure based on the weight in (18). In 

addition, from the conditions in (23), the result in (22) has constraints that reduce the result’s explanatory power. To 

overcome this problem, we propose the following weighted individuality based fuzzy clustering result as follows: 

  ̂  ( ̅  )   (
 ( )   
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)   ̅       ( ) ̂    
( )  
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∑     
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where   is a diagonal matrix whose diagonal elements are  ( )    ( ) . Note that  ̅   in (24) does not have the 

constraints in (23). Also, from (24), it can be seen that  ̅   considers the normalized degree of reliability for subject   

which is represented by  ( ). 

   Next, we apply  ̃ in (21) to MDS in (10) and obtain the result of MDS as follows: 

 ̂̂  ( ̂̂  )                   

By considering the degree of reliability for each subject based on the MDS in (19), we define the following result for 

weighted individuality based MDS as follows: 

 ̃ ̂̂  ( ̅  )  ̃  (
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where  ̃ is a diagonal matrix whose diagonal elements are  ̃( )    ̃( ). From (25), it can be seen that  ̅   considers the 

normalized degree of reliability for subject   which is represented by  ̃( ). 
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5. Numerical Examples 
 We use a dataset of sensor data of daily and sports activities performed by 8 subjects with respect to 45 variables. 

[12], [13] The dataset consists of 19 regular daily and sports activities, and we select the activity of running on a treadmill 

at a speed of 8 km/h. For this activity, we use data which consisted of 7500 times, 45 variables. For the variables, the data 

was observed for 45 (5 body positions × 9 kinds of sensors) variables which consist of 5 body-worn sensor units positioned 

on the torso (T), right arm (RA), left arm (LA), right leg (RL), left leg (LL), and each sensor unit has 9 kinds of 

information including x-axial accelerometers (xacc), y-axial accelerometers (yacc), z-axial accelerometers (zacc), x-axial 

gyroscopes (xgyro), y-axial gyroscopes (ygyro), z-axial gyroscopes (zgyro), x-axial magnetometers (xmag), y-axial 

magnetometers (ymag), z-axial magnetometers (zmag).  

 Figure 1 shows a result of values of the weights which shows the degree of reliability for each subject. In this figure, 

the ordinate shows the values of { ( )    ( )} in (24) and the abscissa shows the values of { ̃( )    ̃( )} in (25). The 

point “pt” shows a point of  -th subject at the coordinate of ( ̃( )  ( ))        . From this figure, the two kinds of 

weights based on different latent structures which are the result of MDS at  -th subject,  ̂( ), and the result of dynamic 

FCM at the same subject,   , are almost linear relationship in indicating difference among 8 subjects. In fact, the 

correlation between and over 8 subjects in this figure is 0.99. From this, the proposed weights for individual difference 

extraction based on the objective function of convex clustering shows robustness for the difference of the kinds of 

representative, which are latent structures of data obtained from different kinds of methods such as dynamic FCM and 

MDS.  

 Figure 2 shows the relationship between the difference of a pair of subjects of data in (20) and difference of the same 

pair of the subjects of the results of MDS. The difference of the same pair of the subjects   and    of the results of MDS in 

(16) is calculated as follows: 

 ̌    ∑ ∑ ( ̂  
( )   ̂

  

(  )
)
 

  

   

    

   

                          (26) 

where  ̂  
( )

 shows value of coordinate of an object   in   dimension at  -th subject and   ̂
  

(  )
 shows value of coordinate of 

an object   in   dimension at   -th subject. The point “     ” is a point that shows a difference between subjects   and    at 

the coordinate of ( ̂     ̌   )    
        (    ). From this figure, there is an almost monotone relationship between 

the two differences. This shows the validity of the result of MDS and the use of this result for the proposed reliability for 

indicating individuality in (19) and the proposed weighted individuality based MDS in (25).  

 Figure 3 shows the proposed result for weighted individuality based MDS in (25). From this figure, we can see that 

dimension 2 shows an ability to distinguish between male and female subjects. Subjects 1, 2, 6, and 7 are female subjects, 

and other subjects are male in this data. So, female subjects have the tendency of lower scores with respect to dimension 2, 

otherwise male subjects have an opposite tendency which has higher values with respect to dimension 2. 

 Figure 4 shows the result of FANNY in (22). In this figure, the abscissa shows the values of degree of belongingness 

of objects to cluster 1, and the ordinate is the values of degree of belongingness of objects to cluster 2. The number of 

clusters is assumed to be 2. 

 Figure 5 shows a result of the proposed weighted individuality-based FANNY applied dissimilarity among subjects 

of data in (24). From the comparison between figures 4 and 5, we can see two groups; one is a group of subjects 7 and 8, 

and another is a group of other subjects in both figures 4 and 5. However, from the constraints in (23), in figure 4, all the 

differences of 8 subjects are on the same line, and we cannot see the detailed difference over 8 subjects. And in figure 5, 

we can see the more detailed difference among 8 subjects compared with the original result of FANNY shown in figure 4. 

In particular, we can see the detailed difference among subjects 1 to 6 in figure 5 compared with the case of figure 4. From 

this comparison, we can obtain more detailed differences considering individual scores for each subject in the proposed 

weighted individuality-based fuzzy clustering. 
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           Fig. 1. Relationship between the two kinds of weights of subjects   Fig. 2. Relationship between the difference of data and 

                                                                                                                                  the difference of MDS results for each pair of subjects  

                  

Fig. 3. Result of proposed weighted MDS applied      Fig. 4. Result of FANNY applied dissimilarity among subjects 

                                   dissimilarity among subjects 

 

        Fig. 5. Result of proposed weighted FANNY applied dissimilarity among subjects 
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6. Conclusions 
 This paper proposes methods to obtain results of fuzzy clustering and MDS for classifying subjects over the data 

consisted of objects, variables, and subjects. In these methods, we utilize the degree of reliability obtained by using the 

results of dynamic fuzzy clustering and MDS at each subject. This degree of reliability is defined as a degree that shows 

how much the obtained result of the fuzzy clustering or MDS fits the original subject’s data as a latent structure of each 

subject’s data and how much the obtained result shows well-classified status as the optimality of the convex clustering. 

Therefore, the validity of the degree of reliability of the result of dynamic fuzzy clustering and MDS at each subject is 

theoretically guaranteed. 

 In addition, we show the robustness of the degree of reliability with respect to the variety of the obtained latent 

structure of data by using a numerical example. We show that the degree of reliability used in a latent structure as a result 

of the dynamic fuzzy clustering is highly correlated with the degree of reliability used in a latent structure as a result of 

MDS. Other numerical examples show a better performance of the proposed methods compared with ordinary results. In 

particular, in the case of fuzzy clustering, the ordinary result cannot avoid the constraint in which the sum of the degree of 

belongingness of objects to clusters is 1 for a fixed object. Therefore, the explainable ability of the original data structure is 

also limited. By including the degree of reliability for each subject to the original fuzzy clustering result, we can avoid this 

constraint and obtain a more detailed result of the clustering of subjects. 

  The target data is many kinds of data of objects through several subjects; however, it is not limited to subjects. For 

example, if data will be obtained through several times, it would be useful to know the difference over the times, so we can 

rapidly detect the time of the fault. Therefore, in future studies, examinations of the proposed methods for various kinds of 

data are necessary to know the generalization performance. In addition, other kinds of latent structures obtained as 

representative for each subject should be applied to the proposed method to strengthen the investigation of the feature of 

the robustness of the proposed degree of reliability for the latent structure of each subject’s data.  
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