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Abstract -  The multivariate hypothesis testing problem is a more interesting task of the  statistical inference for high-dimensional 

data nowadays, in which the dimension   of the observation vectors is diverging and could even be larger than the sample size. 

However, in many applications of multivariate hypotheses problems, the data are highly sensitive and  require privacy protection. Here 

we consider a private non-parametric projection test for the comparison of the high-dimensional multivariate mean vectors that 

guarantees strong differential privacy. The empirical evidence shows that the non-parametric projection test under differential privacy 

gives accurate inference under the null hypothesis and a higher power under the local alternative hypothesis. 
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1. Introduction 
With the rapidly development of science and technology, the collection data with a complex structure and sharp 

increase in data dimensions is widespread in many fields, such as biomedical science, finance and so on [1]. For example, 

in  modern biomedicine, DNA microarrays expression tracks usually thousands of genes simultaneously of each subject. 

Moreover, there are many applications where the data analyzed includes sensitive information. The data owner releases 

some synthetical results based on data, without revealing the sensitive information of subjects but reflecting the real 

distribution of the data as much as possible [2]. Recently, many researches in computer sciences field focus on the 

statistical hypothesis problem based on differential privacy (DP). Kifer and Rogers (2017) [3] developed a private test 

statistics based on mahalanobis distance to the hypothesis problem of goodness of fit and independence testing.  Martin et 

al. (2021) [4] showed that the comparison of multivariate population means under DP are of interest in the statistical 

inference. The bootstrap algorithm for Hotelling    test under DP yields a reliable test decision when the dimension   of 

the observation vectors is fixed. See also [5]–[7].  However, in high-dimensional data analysis, in which the dimension   is 

diverging, even larger than the sample sizes,  the  classical statistical inference under DP, such as Hotelling   , chi-square 

tests, can be not defined since the sample covariance matrix is singular.   

To address the comparison of  mean vectors under DP in such high dimensional scheme, we here consider several 

non-private parametric methods. Bai and Saranadasa (1996) [8] proposed a modification of the Hotelling    statistic by 

using the   -norm but not involving the inverse of the covariance matrix which is specified later. See also [1], [9]–[11]. 

However, the underlying distribution of many real data tends to be non-normal even after log transformation or can be not 

known.  In this sense, it is interested to apply the non-parametric test for high-dimensional mean vectors test without the 

assumption of underlying distribution of data. Wang and Xu (2021) [12]  proposed an approximate randomization test 

procedure based on the statistics proposed by [11]. Their proposal does not need the condition on the structure of 

covariance matrix and the balance of sample sizes. However, the randomization test based on the statistic proposed by [11] 

tends to have unsatisfactory power performance.  

In this paper, we develop a non-parametric permutation test based on the projection test under DP for high 

dimensional mean vectors hypothesis problem. The parametric projection test is proposed by our preview work. Several 

simulation studies are conducted for comparing the proposed permutation test based on the projection test with the 
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permutation test based on the tests proposed by [8].  The numerical results show that the non-parametric tests under 

DP still maintain a high accuracy in terms of the Type I error under the null hypothesis, even in the setting with small 

sample size.  On the other hand, under the local alternative hypothesis, the non-parametric projection test enjoys the 

powerful performance, while the non-parametric tests based on the statistics proposed by [8] has unsatisfactory power. 

Indeed, the power behaviour  of  the non-parametric projection test  depends on the choice of the linear coefficient   in 

the projection statistic. 

 

2. Main Results 
Let     ,    , … ,     

     ,      ,  be independent and identically distributed (iid)  -dimensional random 

variable with mean vector    and identical covariance matrix        with a      matrix  . The data            

         generates from the independent component model with structure as follows 

 

            ,                                                                             (1) 

 

where     is iid  -dimensional random variable with zero mean and unit variance (see [11] for more details). In this paper, 

we consider a non-parametric projection test under DP for testing the equality of two mean vectors hypothesis  

 

                                                                               vs            ,                                                           (2) 

 

where the dimension   is larger than the sample size         . In this sense, the classical Hotelling    test is not 

available since the sample covariance matrices are not well defined. Here we introduce two suitable statistics for testing 

problem (2).  

First, we introduce the non-private test statistics. Let  ̅   ∑       
  
    denote the sample mean vector of data    

and     (    )   (    )    (       ) denote the pooled sample covariance matric with the sample 

covariance matrix         . The statistic proposed by [8] takes a form as  

 

                                                            ( ̅    ̅ )
 ( ̅    ̅ )      (  )                                                     (3) 

 

where   (     ) (    ) and   (  ) is a trace operator of matrix   . Under some mild conditions, the statistic      (3) 

after suitable location and scale transformation approximates to the null standard normal distribution [8]. In order to 

improve the power, we use a projection statistic which is based on the    - norm by adding a projection term and is defined 

by  

 

                                     ( ̅    ̅ )
 ( ̅    ̅ )     ( ̅    ̅ )

    ( ̅    ̅ ),                                       (4) 

 

where    is a positive constants sequence with         and    √   . The linear coefficient vector   is a  -

dimensional constant unit vector, i.e. ‖ ‖   . Due to the contribution of the second term of (4), the projection statistic (4) 

achieves to improve the power of the test.  

        Secondly, we construe the private test statistic for the statistics     and    . In order to guarantee the DP property, 

data          both restrict from the  -dimensional cube         with    . Following to Section 3 of [4], we can 

privatize the statistics by privatizing each entries in      and     [4] by using the composition theorems of DP. For the 

privatization of the sample means, we use the popular Laplace Mechanism which results in  ̅ 
    ̅     fulfilling    -

DP, if    (         )
 

 consists of independent random variables          {  
   

  (   )
}. For the privatization of the trace 

of sample pooled covariance matrix    , we also use the Laplace Mechanism to define differentially  private estimate 

    (   )    (   )    with the scalar random noise        {  
   

  (   )
}, satisfying    -DP. Then, the private statistics 

with respect to      and     are, respectively, 

 

   
   ( ̅ 

     ̅ 
  ) ( ̅ 

     ̅ 
  )        (   )  
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and  

 

   
    ( ̅ 

     ̅ 
  ) ( ̅ 

     ̅ 
  )     ( ̅ 

     ̅ 
  )    ( ̅ 

     ̅ 
  ). 

 

       In order to investigate the performance of the  statistics of    
   and    

   for the high-dimensional hypothesis (2), we 

now define the corresponding non-parametric version of private statistics mentioned above. According to the theory of the 

permutation, the probability distribution is invariable between the original data and permuted data under the null 

hypothesis [13]. Let   (           
            

) and the corresponding permutations denote by    which is obtained 

as      (  
 )             , where   

  (  
          

 )  is a random permutation of unit labels          . In 

this sense, the corresponding permutation statistics of    
   and    

   can be defined by using the permuted data   , denoted 

by    
    and    

   , respectively. Therefore, we are able to define the  -value function of the permutation statistics. In order 

to simplify the abuse notation, we denote the permutation statistics by    . In practice, suppose that we have   random 

permutations. Under the null hypothesis, an unbiased and strongly consistent estimate of  -value can be defined as 

 ̂  ∑  (  
    )   

   , where    represents the observed value of statistic on the observed data   and   ( ) is the 

indicator function of the set   that takes value 1 if      and 0 otherwise. Hence, denote the nominal significant level by 

 , the null hypothesis is rejected if  ̂    .  

 

3. Simulation studies 
The performance of the non-parametric projection test for the hypothesis (2) in the high-dimensional framework, in 

which  the dimension   is larger than the sample size         , is here assessed via Monte Carlo simulations based on 

         replications. The empirical distribution of  -value of non-parametric projection test is compared with a non-

parametric competitor proposed by [8]. We also investigate the performance in terms of type I error and the local power. 

Samples     in (1) of size           are generate from the  -variate  ( √  √ ) under the null hypothesis   , 

where  ( √  √ ) is a Uniform distribution with a range between  √  and √  with mean 0 and variance 1. Without loss 

of generality,  suppose that the expectation of data    are zeroes under    and the covariance matrix      where    is 

     identity matrix. For the non-parametric projection test, let    √      ( )  and   has three choices:    

(       ),    (√              ) and    √     , where    is a  -variate vector of ones. If   is an odd integer 

number, we take the ceiling integer of the value of    . In order to guarantee the stronger privacy, we set up small 

  
 

  
 
 

 
. The various simulation setups of the sample sizes and dimension are detailed below: 

(1) Under   , we set up fixed and small sample size          , and various dimension             
       . In this setting, the permutations        

(2) Under   , we set up fixed dimension      , and various sample size                . In this setting, let 

        . 

(3) Under   , we consider the two mean vectors as       and        √   with various          . Here we 

set up the sample size    ,    0.  

 
Table 1 Empirical probability of Type I error for the non-parametric projection test with different       and    (npPT1, npPT2 and 

npPT3, respectively) and non-parametric test proposed by [8] (npBS) with the fixed sample size     at the nominal level α = 0.05 

              

  npPT1 npPT2 npPT3 npBS npPT1 npPT2 npPT3 npBS 

20 0.045 0.047 0.045 0.046 0.045 0.047 0.045 0.046 

50 0.042 0.043 0.042 0.042 0.042 0.043 0.042 0.042 

100 0.048 0.044 0.047 0.047 0.048 0.044 0.047 0.047 

150 0.045 0.044 0.048 0.046 0.045 0.044 0.048 0.046 

200 0.042 0.045 0.045 0.043 0.042 0.045 0.045 0.043 
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Table 1 shows the empirical Type I error for two non-parametric tests with the small sample size. The evidences show that 

the non-parametric approaches maintain a high accuracy in terms of the Type I error under the null hypothesis.  As the 

sample size increases, the more accurate Type I error is obtained (see Table 2).  We also investigate the empirical powers 

of different statistics under the local alternative hypothesis   . Table 3 gives the empirical local power. As   increases, the 

power of all tests increase.  In particular, the empirical local powers of the non-parametric projection test with the quantity 

   and    are more powerful than the test proposed by [8] (BS). In addition, the empirical local power of npPT1 is 

comparable to that of npBS, which confirms that the projection test is powerful when the direction of   is the same 

as      . 
 

Table 2 Empirical probability of Type I error for the non-parametric projection test with different       and    (npPT1, npPT2 and 

npPT3, respectively) and non-parametric test proposed by [8] (npBS) with the fixed dimension       at the nominal level α = 0.05 

              

  npPT1 npPT2 npPT3 npBS npPT1 npPT2 npPT3 npBS 

20 0.050 0.050 0.051 0.051 0.050 0.050 0.051 0.051 

50 0.048 0.050 0.049 0.048 0.048 0.050 0.049 0.048 

100 0.052 0.050 0.051 0.050 0.052 0.050 0.052 0.050 

150 0.046 0.049 0.048 0.045 0.046 0.049 0.048 0.045 

 
Table 3 Empirical local power for the non-parametric projection test with different       and    (npPT1, npPT2 and npPT3, 

respectively) and non-parametric test proposed by [8] (npBS) with the fixed sample size     and dimension     . 

              

  npPT1 npPT2 npPT3 npBS npPT1 npPT2 npPT3 npBS 

3 0.055 0.085 0.116 0.051 0.055 0.085 0.115 0.051 

5 0.065 0.135 0.198 0.062 0.065 0.135 0.197 0.062 

7 0.080 0.198 0.271 0.077 0.080 0.197 0.270 0.076 

9 0.099 0.251 0.325 0.095 0.099 0.250 0.324 0.094 

 

4. Conclusion 
This work extended a non-parametric projection statistic to test the equality of two mean vectors under DP for 

high dimensional data. The non-parametric projection test is defined by adding a projection term based on   -norm of 

two sample mean vectors, which achieves improved power under some mild conditions. The simulation results show 

that the non-parametric projection test under DP enjoys a comparable Type I error and a higher power than its 

competitor even for very small sample sizes. In particular,  the non-parametric tests are more accurate in terms of Type 

I errors when increasing the sample sizes.  However, the non-parametric approach costs much time with large sample 

sizes. In this sense, further research should focus on the asymptotic theory of a parametric test for such high 

dimensional hypothesis under DP.  
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