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Abstract - There has been an increasing amount of attention focused on using high-throughput in vitro screening for identification of 
hazardous chemicals in the environment over the last decade. The advantage of such methods to identify chemical agents that have 
potential to cause adverse effects in humans is the fact that it allows the assessment of several chemicals in a short period of time. 
Although nonlinear regression is routinely used to analyze data generated from the HTS assays, several models have been introduced for 
classifying and identifying the mechanism of action and developing predictive models for assessment of toxicity. Since HTS screening 
data are generated by repeating experiments several times, approaches vary in considering mixed effect models to repeated measures and 
hierarchical models. In this paper, we provide an overview of these approaches and make a comparative analysis of the models. Relative 
advantages as well as limitations are discussed.  
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1. Introduction 

Humans are routinely exposed to a multitude of chemicals through drugs, food additives, pollution, industrial 
waste, and other sources. The industrialization of the modern world has witnessed a steady growth in the 
consumption of chemical agents in many different settings. Regulatory agencies, pharmaceutical companies, and 
food industries are continually faced with the challenge of developing safe levels of chemicals and avoiding 
possible hazards as the result of human exposure to potential toxic substances. Toxicity is defined as any 
undesirable or adverse effect of exogenous substances on humans, animals, and the environment. Often risk 
assessment is utilized to determine possible hazards and for achieving safety. This is a process for evaluating and 
deriving a quantitative or qualitative estimate of the potential health risk to humans or other organisms. It 
represents the likelihood of an adverse effect or the absence of a beneficial effect. Risk is generally defined as the 
probability of an adverse effect and risk estimation can potentially present several problems due to scarcity and 
uncertainty in the data.  

Toxicity assessment of chemical agents have for a long time used laboratory animals in bioassay experiments 
to perform in vivo studies and to determine the adverse effects of toxicants. Typically, depending on the 
toxicological endpoint of interest, e.g. carcinogenicity or developmental effects, specific experiments were 
designed and laboratory animals, mostly mice and rats, were exposed to a few doses of a toxicant in controlled 
environments. Several statistical models were developed, especially in the 80’s and 90’s to describe the 
toxicological processes mathematically and to facilitate risk assessment. Hoel [1] refers to this era as an “exciting 
time” because of the attention given by statisticians to the problem of estimating the human health risk due to 
environmental and occupational exposures. For a thorough description of these models, we refer to Razzaghi [2].  

Unfortunately, the traditional bioassay approach to detect toxicity in chemicals proved to be slow, inefficient, 
and very costly. For example, to determine the cariogenic effect of a chemical, estimation of cancer risk was on 
the basis of long-term bioassay experiments and exposure generally occurred for a period of 200 days to two years 
and would cost several million dollars. Besides, those experiments considered one chemical at a time, while in 
reality, humans are exposed to several chemicals simultaneously. Addressing these inefficiencies, after the 
publication of the National Research Council [NRC, 3], there was a major shift in the paradigm of toxicity testing 
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and High Throughput Screening (HTS) techniques which had gained popularity since the early 1990’s found favor 
in evaluating chemical toxicities. Such experiments allowed for in vitro and rapid evaluation of bioactivity of 
chemicals and enabled the simultaneous assessment of large numbers of chemical compounds. The goal of HTS 
is to identify and compare chemicals that are likely to perturb normal biological processes that can lead to human 
or environmental adverse effects. Three main quantities are used to compare chemicals [4]. These are the 
probability of an active response, the potency or the concentration that caused the biological change, and the 
magnitude of the response called the efficacy of the chemical. In the application of HTS, assays were usually 
conducted at a single test concentration and suffered from a large false positive error. Therefore, the methodology 
was not compatible with toxicity testing, which requires evaluation of compounds with weak activity. Introduction 
of Quantitative High Throughput Screening (qHTS) method introduced by Iglese et al. [5] yielded ground for the 
HTS methods and provided the opportunity to test a chemical agent at several concentration levels while 
significantly reducing the false positive rate. The advantage of the qHTS method is that it can generate 
concentration-response curves for several thousands of compounds in a single experiment. Development of qHTS 
method has clearly given way to new approach methodologies as much more efficient techniques in comparison 
to the old-fashioned low throughput toxicity testing. The qHTS approach can produce results for a multitude of 
chemicals in a matter of days. The methodology has become so popular that in 2019, the US Environmental 
Protection Agency announced that they plan to eliminate all mammalian toxicity testing by the year 2035. For this 
reason, statistical methods are being developed to analyze the data from qHTS experiments and here, we introduce 
some of these models and methods. In the next section, we provide a brief introduction to a formal risk assessment 
methodology and discuss the popular Benchmark Dose (BMD) approach. In the subsequent three sections, we 
discuss methods based on non-linear regression, robust regression and the hierarchical and Bayesian methods. We 
close with some concluding remarks and possible paths for future research. 

 
2. Risk Assessment Methodology 
 Risk assessment is the process of evaluating and deriving a quantitative or qualitative estimation of the 
potential health risk to humans or other organisms from a defined source of hazard. The National Research Council 
in the United States formalized the process of risk assessment in a publication [6] which later became known as 
the “Red Book.” Accordingly, the process pf risk assessment was defined as having four distinct stages. The first 
stage is hazard identification which consists of qualitatively identifying the source of hazard. The second stage is 
Exposure Assessment which entails the identification of the possible routes of exposure. Third, is the Dose-
Response Assessment, which is the critical stage of quantification of the relationship that may exist between the 
risk and the exposure level. Often, a sigmoid-shaped mathematical function is used to describe the effect as a 
function of exposure level. The fourth and the final stage of the risk assessment process is Risk Characterization 
which involves the integration of the information gathered form the previous three stages in order to quantitatively 
estimate the risk. Traditionally, to estimate the risk, no-observed-adverse-effect-level (NOAEL) method was used. 
But, that method has been abandoned for the most part and replaced by the more favorable benchmark dose (BMD) 
methodology introduced by Crump [7,8]. The main advantage of this method is that, unlike the NOAEL, it utilizes 
the entire shape of the concentration-response relationship and is not limited to only the experimental dose levels. 
After fitting a statistical model to the data, BMD is determined as the concentration level that causes a fixed preset 
change in response, called the benchmark response (BMR) usually fixed at 5% or 10%. The statistical lower 
confidence (often 95%) limit called BMDL is then determined and used as the so-called point of departure (PoD) 
which is the starting point for calculating an acceptable exposure level. For qHTS data, an alternative approach to 
derive the PoD was introduced by Sands et al [9]. Their method is based on the signal-to-noise crossover dose 
(SNCD) defined as the “dose at which the ratio between the additional effect and the difference between upper 
and lower bounds of the two- sided 90% confidence interval on absolute effect correspond to some critical value 
(e.g. 0.67)”. To estimate the human exposure levels, the PoD is then divided by a series of adjustment factors 
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(AFs) or uncertainty factors (UFs) to account for inter-species extrapolation, inter-individual differences and other 
uncertainties involved in toxicological data interpretation. Haber et al. [10] give a thorough discussion of the BMD 
methodology and its properties. For qHTS data, Anderson and Krewski [11] suggest an additional AF due to in 
vitro to in vivo extrapolation to allow for the calibration of cellular test concentration system used with 
corresponding human doses using pharmacokinetic models.  
With the emergence and growth of the new data on toxicity pathway assays using high-throughput tests, the stages 
of risk assessment described above are also going through major revisions. The US Environmental Agency 
initiated the NextGen project for developing the paradigm in risk assessment for high-throughput data. The specific 
goal of the project was making risk assessment faster, less expensive, and more scientifically robust [12]. The 
process of risk Assessment for the next generation of risk science is well delineated in [13]. 
 
3. Nonlinear Regression Methods  

A critical step for the analysis of qHTS data, is the establishment of the mathematical model that characterizes 
the concentration-response relationship. Although there are many mathematical functions that represent a sigmoid-
shaped curve, the Hill model is widely accepted and used for qHTS data. As pointed out in Shockly [14], the Hill 
model has a long and merited reputation for describing the concentration-response in many biological experiments, 
partly because the model parameters “have convenient biological interpretations and direct comparison of its 
parameter estimates from different experiments provides a convenient way to compare concentration-response 
profiles.”. Mathematically, the Hill function can be defined in different forms. Some authors (e.g.[15]) define the 
Hill function as  

 𝑓𝑓(𝑥𝑥,𝜽𝜽) = 𝜃𝜃𝟎𝟎 +  
𝜃𝜃1

1 + � 𝑥𝑥𝜃𝜃3
�
𝜃𝜃2

                                                                                                                               (1) 

where 𝑥𝑥 is the dose of a chemical, 𝜽𝜽 = (𝜃𝜃0,𝜃𝜃1,𝜃𝜃2,𝜃𝜃3)𝑇𝑇 is the vector of parameters with the following 
interpretations: 
𝜃𝜃0: Lower asymptote. 
𝜃𝜃1: Difference between the mean response baseline (zero concentration) and the lower asymptote, also referred to 
as the chemical efficacy. 
𝜃𝜃2: Slope or shape parameter. 
𝜃𝜃3: Is the median effective dose known as 𝐸𝐸𝐸𝐸50, which is the dose corresponding to 50% maximal response. 
Alternatively, other authors (e.g. [16]) define the Hill function in its logistic format as  

𝑓𝑓(𝑥𝑥,𝜽𝜽) = 𝜃𝜃𝟎𝟎 +  
𝜃𝜃1

1 + 𝑒𝑒
�log (𝜃𝜃3)−log (𝑥𝑥)

𝜃𝜃2′
�
                                                                                                                     (2) 

where 𝜃𝜃2′ =  − 1
𝜃𝜃2

 and represents the steepness of the curve, being the slope of the tangent line at log (𝐸𝐸𝐸𝐸50).    
Suppose now that an experiment consists of k concentrations 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 and let 𝑛𝑛𝑖𝑖be the number of replications at 
concentration 𝑥𝑥𝑖𝑖   𝑖𝑖 = 1,   ,𝑘𝑘. The observed responses are first normalized using one of several standard methods 
[17].  The nonlinear regression approach to analyzing the qHTS data, generally begins by fitting the Hill model 
and assuming that 

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝑓𝑓(𝑥𝑥𝑖𝑖,𝜽𝜽) +  𝜀𝜀𝒊𝒊𝒊𝒊                   𝑖𝑖 = 1, … ,𝑘𝑘, 𝑗𝑗 = 1, … , 𝑛𝑛𝑖𝑖                                                                                    (3) 
where 𝑦𝑦𝑖𝑖𝑖𝑖 denotes the normalized response of the 𝑗𝑗𝑗𝑗ℎ assay at the 𝑖𝑖𝑗𝑗ℎ concentration and 𝜀𝜀𝑖𝑖𝑖𝑖 is the unobserved 
random error assumed to have a normal distribution with zero mean and an unknown variance 𝜎𝜎𝑖𝑖2 𝑖𝑖 = 1, … ,𝑘𝑘. An 
optimization technique is used to fit the above model. Using the Ordinary Least Squares method, [18] developed 
a classification algorithm whereby after fitting the Hill model, and estimating the model parameters, each chemical 
was classified into one of four classes based on the estimated values of 𝜃𝜃1 and 𝜃𝜃3. For chemicals in classes 1 and 
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2, the procedure then declared a chemical active if in addition, the regression coefficient of determination 𝑅𝑅2 
exceeded 0.9. Noting that this methodology ignores the uncertainty associated with the parameter estimates, 
Parham et al. [19] first used a likelihood ratio test with Bonferroni correction to test the null hypothesis that 𝜃𝜃1 is 
zero and if the null hypothesis was rejected, the chemical was then declared active based on some additional 
constraints on the estimates of 𝜃𝜃2 and 𝜃𝜃3. A three-stage algorithm based on statistical testing for classification of 
chemicals was also developed in [20]. The method of maximum likelihood for estimating the parameters of the 
Hill model was used by [21]. Assuming the following structure for the model variance 

𝜎𝜎𝑖𝑖2 =  𝜎𝜎02𝑦𝑦𝑖𝑖𝑖𝑖2𝜆𝜆                 𝜆𝜆 ≥ 0                                                                                                                                     (4) 
where  𝜎𝜎0 and 𝜆𝜆 are constants to be determined, an optimal design for the qHTS assay is developed using the BMD 
as the PoD. Note that the in the above variance structure, 𝜆𝜆=0 and 𝜆𝜆=1 correspond respectively to constant variance 
and constant coefficient of variation cases. 
 
4. Application of Robust Regression  

As pointed out in [14], the parameter estimates of the Hill model usually suffer from high uncertainties, which 
can arise if the range of tested concentrations fail to include at least one of the two asymptotes. This means that 
the responses are non-homoscedastic and concentration spacing is not optimal.  It is concluded that the problem 
with qHTS data cannot be resolved as long as we rely on parameter estimates derived from naïve curve-fitting 
procedures. The problem does not lie in the estimation method, rather in the application of nonlinear regression to 
study designs that lack suitable concentration spacing and sufficient replications. Various robust techniques have 
been proposed to improve the situation with the parameter estimation. Modifying the nonlinear regression equation 
(3) as  

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝑓𝑓(𝑥𝑥𝑖𝑖,𝜽𝜽) + 𝜎𝜎𝒊𝒊 𝜀𝜀𝒊𝒊𝒊𝒊                   𝑖𝑖 = 1, … , 𝑘𝑘, 𝑗𝑗 = 1, …,                                                                                  (5) 
where 𝜎𝜎𝑖𝑖 the error standard deviation at 𝑥𝑥𝑖𝑖, Lim et al [22] describe three procedures based on M-estimates for the 
nonlinear regression model. The first method is the ordinary M-estimator (OME) for 𝜽𝜽 defined as the solution of 
the optimization problem 

𝜽𝜽� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 ��ℎ2 �𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓�𝑥𝑥𝑖𝑖,,𝜽𝜽��
𝑖𝑖,𝑖𝑖

�                                                                                                                      (6) 

where ℎ is a suitable Huber score function. The second method is the weighted M-estimator (WME) where the 
argument of the score function is weighted by 𝜎𝜎𝑖𝑖−1 and a penalty function of log (𝜎𝜎𝑖𝑖) is added to the objective 
function (6). The third method is the so-called preliminary test estimate (PTE) where after fitting the OME for 
each 𝑥𝑥𝑖𝑖, the residuals are tested for heteroscedasticity under a loglinear model using a t test and either the OME or 
the WME is selected based on a cut-off value of the t score.  Using the dose response data for two compounds 
from the US National Toxicology Program library of 1408 compounds that were evaluated using qHTS assay, they 
show that all three methods produce estimates that are robust to outliers and influential observations. However, 
the PTE method is also robust to error variance and may be more useful in practice. The performance of the PTE 
method is evaluated by simulation using the false discovery rate (FDR) and power in Lim et al [15].  Properties of 
the robust ridge regression was also explored in [23] and [24]. An ordinary ridge M-estimator is the solution of 
the following minimization problem  

𝜽𝜽�𝑹𝑹(𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 ��ℎ2 �𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓�𝑥𝑥𝑖𝑖,,𝜽𝜽��
𝑖𝑖,𝑖𝑖

+ 𝑘𝑘 𝜽𝜽𝑇𝑇𝜽𝜽�                                                                                          (7)  

where, as before, k is the number of dose levels and 𝜽𝜽𝑇𝑇 is the transpose of the unknown parameter vector 𝜽𝜽. 
Similarly, for the weighted ridge regression the first term in objective function (7) is weighted by𝜎𝜎𝑖𝑖−1 and the 
penalty function log (𝜎𝜎𝑖𝑖) is also added. Note that in (7), when the score function h is the identity function, the 
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ordinary ridge regression estimator obtained from ordinary least squares estimator is resulted. The asymptotic 
properties of the estimators are derived and the through simulation, the ridge regression estimators are compared 
with other methods. Specifically, it is shown that the biases of the ridge regression estimators are much smaller 
than the corresponding standard estimators in many cases.  
 
5. Hierarchical and Bayesian Approaches 

For qHTS assays, one is estimating the response of a large number of chemicals across a variety of screening 
assays with sparse dose-response data for each chemical and assay combination. Fitting a dose-response model to 
each assay for each chemical requires the estimation of a large number of parameters and often leads to poor 
variance estimates. Noting this, [4] points out that there are currently several semi-parametric Bayesian methods 
for monotone regression for a single curve. In addition, other ad-hoc methods such as piecewise linear spline 
models, Bernstein polynomial model are not adequate because in qHTS assays, we are estimating the response of 
several chemicals on multiple assays. Hence, “HTS requires a dose-response method that is robust to the sparsity 
of the data for each chemical-assay combination, takes advantage of the larger number of chemicals and assays, 
and accurately estimates the efficacy, potency, and probability of an active response.” The authors propose a 
Bayesian hierarchical model for dose-response that is specifically tailored to the high -dimensional, sparse data 
setting. Their model is called the zero-inflated piecewise log -logistic model. The dose response function is defined 
as a mixture of non-active response and an active response. Thus, the model depends on a latent variable which is 
equal to 1 if the response is active and 0 otherwise. Using a hierarchical structure based on normal distribution on 
the model parameters and the latent variables, they apply a MCMC algorithm which is a hybrid Gibbs and 
Metropolis sampler to derive the posterior distribution. Using simulation, they show that their hierarchical 
approach to analyzing qHTS data outperforms method that treat each curve as independent and ignores correlation 
between assays.  

Application of the Bayesian regression tree was explored in Low-Cam et al [25]. It is argued that the advantage 
of this approach is that unlike the classical approaches that rely on data summaries, the Bayesian tree structure 
solves the problem of low sample size by combining all measurements from a general exposure experiment across 
doses, time of exposure, and replicates. Wheeler [26] notes that for qHTS data, the observed dose-response curves 
are cross sections of a surface defined by a chemical’s structural properties. Thus, he proposes a model to 
characterize this surface as a sum of learned basis functions formed as the tensor product of lower dimensional 
functions. Wheeler’s model expresses the dose response function as the product of spline functions defined over 
the space of observed vector X and the space of the dose levels D. Then, each spline function is assumed to be the 
span of spline basis. He then defines a basis over the product space of X × D where each basis function is the 
tensor product of two surfaces defines over X and D. He shows that his approach is computationally more effective. 

 
6. Concluding Remarks 

There is a large number of chemicals used in industry and commerce. Hagiwara [21] states that only a fraction 
the approximately 140,000 chemicals have been evaluated in depth. Noting that the traditional animal bioassay 
toxicity testing has proved to be extremely inefficient, taking a long time and being very expensive, the National 
Research Council (NRC) in the United States [3] has delineated a long-term vision for toxicity testing. Their 
proposal has received an overwhelming support nationally and internationally, and has created a major turnaround 
in toxicity testing. More and more the toxicity testing paradigm is rapidly moving towards the high-throughput in 
vitro screening (HTS). Although there is a major change in the methodologies for toxicity, they are still compatible 
with the risk assessment paradigm [5] established by the NRC earlier [10]. A wide range of statistical models have 
been introduced and utilized to manage and analyze HTS data. Here, an attempt has been made to provide an 
overview of these models and their properties. Although many of these models are mathematically elegant and 
statistically powerful, the problems relating to analyzing HTS data is far from over. First, the problem of optimal 
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design of such experiments is an issue that requires attention. In addition, the problem of developmental toxicity 
requires more in-depth study. Sipes et al [27] assumes that the developmental toxicity of in vivo animal studies 
guideline correlate with cell-based and cell-free in vitro HTS data. However, it is not clear how the cell-based in 
vitro data would create a mechanistic relationship in identifying chemicals with potential to cause developmental 
toxicity. Although in the in vivo animal studies, these relationships have been largely established, a thorough study 
of these problems for HTS data would be enlightening.  Models that can predict pathways linked to specific 
developmental effects could greatly improve our understanding of developmental complexities.     
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