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Abstract - Clustering of time series is a central machine learning task with applications in many fields. While most procedures focus 
on real-valued time series, very few works consider series with alternative ranges. In this paper, the problem of clustering ordinal time 
series is addressed. To this aim, two novel distances between ordinal series are introduced and used as input for the fuzzy C-medoids 
algorithm. Both metrics are based on estimated cumulative probabilities, thus automatically taking advantage of the underlying ordering 
existing in the series range. The corresponding clustering algorithms are able to group series generated from similar underlying stochastic 
processes, achieve accurate results with series coming from a wide variety of models and are computationally efficient. Moreover, the 
consideration of the fuzzy approach allows the techniques to properly handle time series showing an uncertain behaviour. An extensive 
simulation study shows that the proposed methods outperform several alternative procedures. 
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1. Introduction 

Time series clustering concerns the problem of splitting a set of unlabelled time series into homogeneous groups in such 
a way that similar series are placed together in the same group and dissimilar series are located in different groups. This 
unsupervised classification tool is often used to characterise different dynamic patterns without the need to analyse and model 
each single time series, which is computationally intensive when dealing with datasets of large size. Several time series 
clustering algorithms have been proposed in the 21st century, which has witnessed a growing interest in this challenging 
field. An extensive overview including current advances, future prospects, interesting references and specific application 
areas is provided by [1]. 

The majority of clustering methods focus on real-valued time series while the treatment of series with categorical range, 
so-called categorical time series (CTS), has received much less attention. Additionally, to the best of our knowledge, all the 
proposed clustering methods for CTS are designed for the general case in which the series take nominal values, i.e., when 
no underlying ordering exists in the categorical range. Clearly, these methods are still valid when such inherent ordering 
exists, that is, when the set that is subject to clustering contains ordinal time series (OTS). However, when applying these 
procedures in OTS datasets, one completely ignores the natural ordering, which could be an important factor when identifying 
the underlying clustering partition. Moreover, OTS datasets appear rather naturally in several application domains including 
finance [2], environmental sciences [3] or medicine [4], among others. Based on previous considerations, one can state that 
there is a clear need for the construction of clustering algorithms specifically designed to deal with OTS.    

The main goal of this paper is to introduce fuzzy clustering algorithms for OTS capable of: (i) grouping together ordinal 
sequences generated from similar stochastic processes, (ii) achieving accurate results with series coming from a broad variety 
of ordinal models, and (iii) performing the clustering task in an efficient manner. To this aim, we propose two dissimilarity 
measures between OTS which are based on features quantifying marginal properties and serial dependence patterns. Both 
metrics are used as input for the standard fuzzy C-medoids algorithm, which allows for the assignment of gradual 
memberships of the OTS to clusters. Specifically, the consideration of the fuzzy approach enables the techniques to properly 
handle time series showing an uncertain behaviour. Assessment of the clustering approaches is carried out by means of a 
comprehensive simulation study including different ordinal processes commonly used in the literature. 
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The rest of the paper is organised as follows. The two proposed distances between OTS are presented in Section 2 along 
with an illustrative example. In Section 3, fuzzy clustering algorithms based on both dissimilarities are introduced. The 
methods are evaluated in Section 4 through some simulations. Some concluding remarks are summarised in Section 5. One 
proposition is given in the paper, but its proof is not provided due to space limitations. 

 
2. Two distances between OTS 

In this section, we present two novel dissimilarities between ordinal series.  
 

2.1. Some background on ordinal processes 
Let {𝑋𝑋𝑡𝑡}𝑡𝑡∈ℤ be a strictly stationary stochastic process having the ordered categorical range 𝒮𝒮 = {𝑠𝑠0, … , 𝑠𝑠𝑛𝑛} with𝑠𝑠0 <

𝑠𝑠1 < ⋯ < 𝑠𝑠𝑛𝑛. Process {𝑋𝑋𝑡𝑡}𝑡𝑡∈ℤ is often referred to as ordinal process, while categories in 𝒮𝒮 are frequently called states. 
Let {𝐶𝐶𝑡𝑡}𝑡𝑡∈ℤ be the count process with range {0, … ,𝑛𝑛} generating  the ordinal process {𝑋𝑋𝑡𝑡}𝑡𝑡∈ℤ, i.e., 𝑋𝑋𝑡𝑡 = 𝑠𝑠𝐶𝐶𝑡𝑡 . It is well 
known that the distributional properties of {𝐶𝐶𝑡𝑡}𝑡𝑡∈ℤ (e.g., stationarity) are properly inherited by {𝑋𝑋𝑡𝑡}𝑡𝑡∈ℤ [5]. In particular, 
the marginal probabilities, 𝑝𝑝𝑖𝑖, and the bivariate probabilities at lag 𝑙𝑙 ∈ ℤ, 𝑝𝑝𝑖𝑖𝑖𝑖(𝑙𝑙), can be expressed as 𝑝𝑝𝑖𝑖 = 𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑠𝑠𝑖𝑖) =
𝑃𝑃(𝐶𝐶𝑡𝑡 = 𝑖𝑖) and 𝑝𝑝𝑖𝑖𝑖𝑖(𝑙𝑙) = 𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑠𝑠𝑗𝑗,𝑋𝑋𝑡𝑡−𝑙𝑙 = 𝑠𝑠𝑖𝑖) = 𝑃𝑃(𝐶𝐶𝑡𝑡 = 𝑗𝑗,𝐶𝐶𝑡𝑡−𝑙𝑙 = 𝑖𝑖), 𝑖𝑖, 𝑗𝑗 = 0, … ,𝑛𝑛 . Note that both the marginal 
and the bivariate probabilities are still well defined in the general case of a stationary stochastic process with nominal range, 
i.e., when no underlying ordering exists in the range 𝒮𝒮. In addition, in an ordinal process, one can consider the corresponding 
cumulative probabilities, which are defined as 𝑓𝑓𝑖𝑖 = 𝑃𝑃(𝑋𝑋𝑡𝑡 ≤ 𝑠𝑠𝑖𝑖) = 𝑃𝑃(𝐶𝐶𝑡𝑡 ≤ 𝑖𝑖) and 𝑓𝑓𝑖𝑖𝑖𝑖(𝑙𝑙) = 𝑃𝑃(𝑋𝑋𝑡𝑡 ≤ 𝑠𝑠𝑖𝑖,𝑋𝑋𝑡𝑡−𝑙𝑙 ≤ 𝑠𝑠𝑗𝑗) =
𝑃𝑃(𝐶𝐶𝑡𝑡 ≤ 𝑖𝑖,𝐶𝐶𝑡𝑡−𝑙𝑙 ≤ 𝑠𝑠𝑗𝑗), 𝑖𝑖, 𝑗𝑗 = 0, … ,𝑛𝑛 − 1, 𝑙𝑙 ∈ ℤ, for the marginal and the bivariate case, respectively. 

In practice, quantities 𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖𝑖𝑖(𝑙𝑙), 𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑖𝑖𝑖𝑖(𝑙𝑙) must be estimated from a 𝑇𝑇-length realisation of the ordinal process, 

𝑋𝑋𝑡𝑡 = {𝑋𝑋1, … ,𝑋𝑋𝑇𝑇}, usually referred to as ordinal time series (OTS). Natural estimates of these probabilities are given by 

𝑝𝑝𝑖𝑖 = ∑𝑘𝑘=1
𝑇𝑇 𝐼𝐼(𝑋𝑋𝑘𝑘=𝑠𝑠𝑖𝑖)

𝑇𝑇 , 𝑝𝑝𝑖𝑖𝑖𝑖(𝑙𝑙) = ∑𝑘𝑘=1
𝑇𝑇−𝑙𝑙 𝐼𝐼(𝑋𝑋𝑘𝑘=𝑠𝑠𝑖𝑖)𝐼𝐼(𝑋𝑋𝑘𝑘+𝑙𝑙=𝑠𝑠𝑗𝑗)

𝑇𝑇−𝑙𝑙
, 𝑓𝑓𝑖𝑖 = ∑𝑘𝑘=1

𝑇𝑇 𝐼𝐼(𝑋𝑋𝑘𝑘≤𝑠𝑠𝑖𝑖)
𝑇𝑇 , 𝑓𝑓𝑖𝑖𝑖𝑖(𝑙𝑙) = ∑𝑘𝑘=1

𝑇𝑇−𝑙𝑙 𝐼𝐼(𝑋𝑋𝑘𝑘≤𝑠𝑠𝑖𝑖)𝐼𝐼(𝑋𝑋𝑘𝑘+𝑙𝑙≤𝑠𝑠𝑗𝑗)
𝑇𝑇−𝑙𝑙

, where 𝐼𝐼(⋅) 
denotes the indicator function. 

Probabilities 𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖𝑖𝑖(𝑙𝑙), 𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑖𝑖𝑖𝑖(𝑙𝑙) can be used to represent the process {𝑋𝑋𝑡𝑡}𝑡𝑡∈ℤ in terms of marginal and serial 
dependence patterns. An alternative way of describing a given ordinal process is by means of features measuring classical 
statistical properties (e.g., centrality, dispersion...) in the ordinal setting. A practical approach to define these quantities 
consists of considering expected values of some well-known distances between ordinal categories [6]. Table 1 presents some 
of the features defined by [6] in the particular case of the underlying ordinal distance being the so-called block distance, 
denoted by 𝑑𝑑o,1, which is defined as 𝑑𝑑o,1(𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗) = |𝑖𝑖 − 𝑗𝑗| for a pair of states 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗. Note that 𝑑𝑑o,1 provides a natural 
way of assessing dissimilarity between ordinal categories, since it treats the ordinal data as if assigning equidistant numbers 
(scores) to the different states.                                                

                            
The first four measures in Table 1 summarise the marginal behaviour of the process, while the ordinal Cohen's 𝜅𝜅, 

𝜅𝜅𝑑𝑑o,1(𝑙𝑙), evaluates the degree of serial dependence exhibited by {𝑋𝑋𝑡𝑡}𝑡𝑡∈ℤ  at a given lag 𝑙𝑙 ∈ ℤ. When dealing with the 

Table 1. Some features of an ordinal process. 
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realisation {𝑋𝑋𝑡𝑡}𝑡𝑡∈ℤ, these features can be estimated by considering the quantities 𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑖𝑖𝑖𝑖(𝑙𝑙). The corresponding estimates 

are denoted as loc𝑑𝑑o,1 , disp𝑑𝑑o,1
, asym𝑑𝑑o,1

, skew𝑑𝑑o,1and 𝜅𝜅𝑑𝑑o,1(𝑙𝑙). A detailed analysis of the asymptotic properties of these 
estimates is provided in [6]. 
 
2.2. Two novel dissimilarities between ordinal time series  

Suppose we have two stationary ordinal processes {𝑋𝑋𝑡𝑡
(1)}𝑡𝑡∈ℤ and {𝑋𝑋𝑡𝑡

(2)}𝑡𝑡∈ℤ. A simply dissimilarity criterion between 
both processes can be established by measuring discrepancy between their corresponding representations in terms of 
cumulative probabilities. In this way, for a given collection of 𝐿𝐿  lags, ℒ = {𝑙𝑙1, … , 𝑙𝑙𝐿𝐿} , we define a distance 𝑑𝑑1  as 

𝑑𝑑1(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(2)) = 𝑑𝑑1,𝑀𝑀(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(2)) + 𝑑𝑑1,𝐵𝐵(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(2)) , with 𝑑𝑑1,𝑀𝑀(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(2)) = ∑
𝑖𝑖=0

𝑛𝑛−1
(𝑓𝑓𝑖𝑖

(1) − 𝑓𝑓𝑖𝑖
(2))2 and 

𝑑𝑑1,𝐵𝐵(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(2)) = ∑
𝑘𝑘=1

𝐿𝐿
∑
𝑖𝑖=0

𝑛𝑛−1
∑
𝑗𝑗=0

𝑛𝑛−1
(𝑓𝑓𝑖𝑖𝑖𝑖

(1)(𝑙𝑙𝑘𝑘)− 𝑓𝑓𝑖𝑖𝑖𝑖
(2)(𝑙𝑙𝑘𝑘))2, where the superscripts (1) and (2) are used to indicate that the 

corresponding probabilities refer to processes  {𝑋𝑋𝑡𝑡
(1)}𝑡𝑡∈ℤ and {𝑋𝑋𝑡𝑡

(2)}𝑡𝑡∈ℤ, respectively.  
Note that the terms 𝑑𝑑1,𝑀𝑀 and 𝑑𝑑1,𝐵𝐵 in metric 𝑑𝑑1 assess dissimilarity between marginal and lagged bivariate probabilities, 

respectively. Moreover, the latter term involves the set ℒ, which must be fixed in advance according to the lags at which one 
wishes to evaluate serial dependence. It is worth remarking that, by considering the cumulative probabilities in the definition 
of 𝑑𝑑1 , we obtain a dissimilarity measure which takes into account the underlying ordering existing in both processes.  

An alternative dissimilarity measure considering features based on the block distance 𝑑𝑑o,1  is defined as 
𝑑𝑑2(𝑋𝑋𝑡𝑡

(1),𝑋𝑋𝑡𝑡
(2)) = 𝑑𝑑2,𝑀𝑀(𝑋𝑋𝑡𝑡

(1),𝑋𝑋𝑡𝑡
(2)) + 𝑑𝑑2,𝐵𝐵(𝑋𝑋𝑡𝑡

(1),𝑋𝑋𝑡𝑡
(2)) , with 𝑑𝑑2,𝑀𝑀(𝑋𝑋𝑡𝑡

(1),𝑋𝑋𝑡𝑡
(2)) =

||(
loc𝑑𝑑o,1

(1)

𝑛𝑛 ,
2disp𝑑𝑑o,1

(1)

𝑛𝑛 ,
asym𝑑𝑑o,1

(1)

𝑛𝑛 ,
skew𝑑𝑑o,1

(1)

𝑛𝑛 )− (
loc𝑑𝑑o,1

(2)

𝑛𝑛 ,
2disp𝑑𝑑o,1

(2)

𝑛𝑛 ,
asym𝑑𝑑o,1

(2)

𝑛𝑛 ,
skew𝑑𝑑o,1

(2)

𝑛𝑛 )||2 and 𝑑𝑑2,𝐵𝐵(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(2)) =

∑
𝑘𝑘=1

𝐿𝐿
(𝜅𝜅𝑑𝑑𝑜𝑜,1

(1) (𝑙𝑙𝑘𝑘)− 𝜅𝜅𝑑𝑑𝑜𝑜,1
(2) (𝑙𝑙𝑘𝑘))2. 

In the same way as 𝑑𝑑1 , dissimilarity 𝑑𝑑2  is formed by the terms 𝑑𝑑2,𝑀𝑀  and 𝑑𝑑2,𝐵𝐵 , which assess discrepancy between 
marginal and serial behaviour of both ordinal processes, respectively. Specifically, the marginal component contains the 
normalised versions of the quantities in Table 1 [6]. Thus, each one of the features is expected to exhibit approximately the 
same weight in the computation of 𝑑𝑑2,𝐵𝐵. 

Since, in practice, we only have finite-length realisations of both ordinal processes, the values of 𝑑𝑑1 and 𝑑𝑑2 are unknown 

and must be properly estimated. The corresponding estimates take the form 𝑑𝑑𝑝𝑝(𝑋𝑋𝑡𝑡
(1)

,𝑋𝑋𝑡𝑡
(2)

) = 𝑑𝑑𝑝𝑝,𝑀𝑀(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(2)) +

𝑑𝑑𝑝𝑝,𝐵𝐵(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(2)), 𝑝𝑝 = 1,2, where 𝑋𝑋𝑡𝑡
(1)

 and 𝑋𝑋𝑡𝑡
(2)

 are realisations (not necessarily with the same length) from processes 

{𝑋𝑋𝑡𝑡
(1)}𝑡𝑡∈ℤ and {𝑋𝑋𝑡𝑡

(2)}𝑡𝑡∈ℤ, respectively, and 𝑑𝑑𝑝𝑝,𝑀𝑀 and 𝑑𝑑𝑝𝑝,𝐵𝐵 are proper estimates of 𝑑𝑑𝑝𝑝,𝑀𝑀 and 𝑑𝑑𝑝𝑝,𝐵𝐵 computed by considering 

the estimates 𝑓𝑓𝑖𝑖
(ℎ)

, 𝑓𝑓𝑖𝑖𝑖𝑖
(ℎ)

(𝑙𝑙𝑘𝑘), 𝑝𝑝, ℎ = 1,2, respectively, for each one of the realisations. 
 

2.3. Motivating example 
This section illustrates the advantages of using cumulative probabilities to differentiate between ordinal processes. This 

is shown by means of a toy example involving synthetic data. For the sake of simplicity, we focus on the marginal case. Let 
us consider three stationary processes having the ordinal range 𝒮𝒮 = {𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3}, denoted by 𝑋𝑋𝑡𝑡

(1), 𝑋𝑋𝑡𝑡
(2) and 𝑋𝑋𝑡𝑡

(3), with 
marginal distributions given by the vectors of probabilities 𝒑𝒑𝑖𝑖 = (𝑃𝑃(𝑋𝑋𝑡𝑡

(𝑖𝑖) = 𝑠𝑠0), … ,𝑃𝑃(𝑋𝑋𝑡𝑡
(𝑖𝑖) = 𝑠𝑠3)) , 𝑖𝑖 = 1,2,3 , 

respectively, such that 𝒑𝒑1 = (0.4,0.1,0.1,0.4) , 𝒑𝒑2 = (0.1,0.4,0.1,0.4) , 𝒑𝒑3 = (0.1,0.1,0.4,0.4) . Let us define a 
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metric 𝑑𝑑∗  measuring dissimilarity between two processes by means of the squared Euclidean distance between the 
corresponding vectors of marginal probabilities. In this way, pairwise distances for the set of processes {𝑋𝑋𝑡𝑡

(1),𝑋𝑋𝑡𝑡
(2),𝑋𝑋𝑡𝑡

(3)} 

are given by 𝑑𝑑∗(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(2)) = 𝑑𝑑∗(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(3)) = 𝑑𝑑∗(𝑋𝑋𝑡𝑡
(2),𝑋𝑋𝑡𝑡

(3)) = 0.18. According to metric 𝑑𝑑∗, each pair of processes 
exhibit the same amount of dissimilarity. However, the underlying ordering in the set 𝒮𝒮 suggests that process {𝑋𝑋𝑡𝑡

(1)}𝑡𝑡∈ℤ 

should be closer to {𝑋𝑋𝑡𝑡
(2)}𝑡𝑡∈ℤ than to {𝑋𝑋𝑡𝑡

(3)}𝑡𝑡∈ℤ, since category 𝑠𝑠1 is closer to 𝑠𝑠0 than category 𝑠𝑠2. Therefore, one could 
state that distance 𝑑𝑑∗ is not appropriate to evaluate dissimilarity between the marginal distributions of two ordinal processes. 

Let us consider now the metric 𝑑𝑑1,𝑀𝑀 (see Section 2.2), which is defined as the squared Euclidean distance between the 
corresponding vectors of cumulative probabilities. These vectors take the form  𝒇𝒇1 = (0.4,0.5,0.6,1) , 𝒇𝒇2 =
(0.1,0.5,0.6,1) and 𝒇𝒇3 = (0.1,0.2,0.6,1) for processes 𝑋𝑋𝑡𝑡

(1), 𝑋𝑋𝑡𝑡
(2) and 𝑋𝑋𝑡𝑡

(3), respectively. Pairwise distances based on 

𝑑𝑑1,𝑀𝑀  are given by 𝑑𝑑1,𝑀𝑀(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(2)) = 0.09,𝑑𝑑1,𝑀𝑀(𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(3)) = 0.18,𝑑𝑑1,𝑀𝑀(𝑋𝑋𝑡𝑡
(2),𝑋𝑋𝑡𝑡

(3)) = 0.09 . According to 

dissimilarity 𝑑𝑑1,𝑀𝑀, the pair (𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(2)) is closer than the pair (𝑋𝑋𝑡𝑡
(1),𝑋𝑋𝑡𝑡

(3)). Moreover, process 𝑋𝑋𝑡𝑡
(2) is located at the same 

distance from 𝑋𝑋𝑡𝑡
(1) and 𝑋𝑋𝑡𝑡

(3). This is reasonable, since the marginal distribution of both 𝑋𝑋𝑡𝑡
(1) and 𝑋𝑋𝑡𝑡

(3) can be obtained from 
the distribution of 𝑋𝑋𝑡𝑡

(2) by transferring the same amount of probability either one step backward (𝑠𝑠0) or upward (𝑠𝑠2) from 
category 𝑠𝑠1, respectively. In essence, cumulative probabilities allow us to better differentiate between ordinal distributions 
because they implicitly take into account the underlying count processes (see Section 2.1). Specifically, the amount of 
dissimilarity is lower when the differences between marginal distributions happen at closer categories. Therefore, metric 
𝑑𝑑1,𝑀𝑀 assigns distance values which are consistent with the ordering existing in the range 𝒮𝒮. 

The above example highlights the importance of considering cumulative probabilities to properly measure dissimilarity 
between ordinal processes. Previous considerations can be justified by means of the following proposition, which expresses 
metric 𝑑𝑑1,𝑀𝑀 in terms of discrepancies between marginal probabilities. 

 
Proposition 1. Given two stationary ordinal processes {𝑋𝑋𝑡𝑡}𝑡𝑡∈ℤ  and {𝑌𝑌𝑡𝑡}𝑡𝑡∈ℤ  with range 𝒮𝒮 = {𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}  and 

marginal distributions (𝑝𝑝0,𝑝𝑝1, … , 𝑝𝑝𝑛𝑛)  and (𝑞𝑞0, 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛) , respectively, with 𝑛𝑛 > 0 , the distance 𝑑𝑑1,𝑀𝑀  between 

processes {𝑋𝑋𝑡𝑡}𝑡𝑡∈ℤ  and {𝑌𝑌𝑡𝑡}𝑡𝑡∈ℤ  can be written as 𝑑𝑑1,𝑀𝑀(𝑋𝑋𝑡𝑡,𝑌𝑌𝑡𝑡) = ∑
𝑖𝑖=0

𝑛𝑛−1
(𝑛𝑛 − 𝑖𝑖)(𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑖𝑖)

2 + 2 ∑
𝑗𝑗=0

𝑛𝑛−2
∑

𝑘𝑘=𝑗𝑗+1

𝑛𝑛−1
(𝑛𝑛 − 𝑘𝑘)(𝑝𝑝𝑗𝑗 −

𝑞𝑞𝑗𝑗)(𝑝𝑝𝑘𝑘 − 𝑞𝑞𝑘𝑘). 
 
According to Proposition 1, distance 𝑑𝑑1,𝑀𝑀 can be expressed as the sum of two terms. The first term contains the squared 

differences, (𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑖𝑖)2, while the second term includes the cross products (𝑝𝑝𝑗𝑗 − 𝑞𝑞𝑗𝑗)(𝑝𝑝𝑘𝑘 − 𝑞𝑞𝑘𝑘). In both cases, specific 
weights are given to the corresponding differences. In particular, the weights are higher when marginal probabilities at lower 
categories are considered, which means that discrepancies in earlier states exhibit a larger influence in the computation of 
𝑑𝑑1,𝑀𝑀 than discrepancies in later states. Note that this is consistent with the distance computations above, where the three 
processes are equidistant when considering marginal probabilities (metric 𝑑𝑑∗), but they exhibit a different, more reasonable 
configuration when considering cumulative probabilities (metric 𝑑𝑑1,𝑀𝑀).  

Previous analyses illustrate the advantages of using cumulative probabilities when measuring dissimilarity between the 
marginal distributions of two ordinal processes. An analogous argument could be provided when assessing  dissimilarity 
between lagged bivariate distributions. The theoretical considerations for the bivariate case are not shown in this version of 
the manuscript for the sake of simplicity. 
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3. Fuzzy clustering algorithms for ordinal time series 
This section is devoted to introduce fuzzy clustering algorithms for ordinal series which are based on the proposed 

dissimilarities 𝑑𝑑1 and 𝑑𝑑2. 

Consider a set of 𝑠𝑠 ordinal time series, 𝕊𝕊 = {𝑋𝑋𝑡𝑡
(1)

, … ,𝑋𝑋𝑡𝑡
(𝑠𝑠)

}, not necessarily having the same length. We wish to 
perform fuzzy clustering on the elements of 𝕊𝕊 in such a way that the series generated from similar underlying stochastic 
processes are grouped together. To this aim, we propose to use a fuzzy 𝐶𝐶-medoids clustering model based on the distances 

introduced in Section 2.2, which tries to find the subset of 𝕊𝕊 of size 𝐶𝐶, 𝕊𝕊
˜

= {𝑋𝑋
˜
𝑡𝑡

(1)
, … ,𝑋𝑋

˜
𝑡𝑡

(𝐶𝐶)
}, whose elements are usually 

referred to as medoids, and the 𝑠𝑠 × 𝐶𝐶 matrix of fuzzy coefficients, 𝑼𝑼 = (𝑢𝑢𝑖𝑖𝑖𝑖), 𝑖𝑖 = 1, … , 𝑠𝑠, 𝑐𝑐 = 1, … ,𝐶𝐶, which define 
the solution of the minimisation problem   

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝕊𝕊
˜
,𝑼𝑼
∑
𝑖𝑖=1

𝑠𝑠
∑
𝑐𝑐=1

𝐶𝐶
𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑝𝑝(𝑖𝑖, 𝑐𝑐)with respect to ∑

𝑐𝑐=1

𝐶𝐶
𝑢𝑢𝑖𝑖𝑖𝑖 = 1,𝑢𝑢𝑖𝑖𝑖𝑖 ≥ 0,            (1) 

 

where 𝑑𝑑𝑝𝑝(𝑖𝑖, 𝑐𝑐) = 𝑑𝑑𝑝𝑝(𝑋𝑋𝑡𝑡
(𝑖𝑖)

,𝑋𝑋
˜
𝑡𝑡

(𝑐𝑐)
), 𝑝𝑝 = 1,2, 𝑢𝑢𝑖𝑖𝑖𝑖 ∈ [0,1] represents the membership degree of the 𝑖𝑖th CTS in the 𝑐𝑐th 

cluster and 𝑚𝑚 > 1 is a real number usually referred to as fuzziness parameter, which regulates the fuzziness of the 
partition. For 𝑚𝑚 = 1, the crisp version of the algorithm is obtained, so the solution takes the form 𝑢𝑢𝑖𝑖𝑖𝑖 = 1 if the 𝑖𝑖th series 
pertains to cluster 𝑐𝑐 and 𝑢𝑢𝑖𝑖𝑖𝑖 = 0 otherwise. As the value of 𝑚𝑚 increases, the boundaries between clusters get softer and 
the resulting partition is fuzzier. The constrained optimization problem in (1) can be solved by means of the Lagrangian 
multipliers method, which provides an iterative algorithm that alternately optimises the membership degrees and the 

medoids. Specifically, the iterative solutions for the membership degrees are given by 𝑢𝑢𝑖𝑖𝑖𝑖 = [ ∑
𝑐𝑐′=1

𝐶𝐶
(𝑑𝑑𝑝𝑝(𝑖𝑖,𝑐𝑐)

𝑑𝑑𝑝𝑝(𝑖𝑖,𝑐𝑐′)
)

1
𝑚𝑚−1]−1, for 

𝑝𝑝 = 1,2, 𝑖𝑖 = 1, … , 𝑠𝑠, 𝑐𝑐 = 1, … ,𝐶𝐶. Once the membership degrees are obtained through (1), the 𝐶𝐶 series minimising the 
objective function in (1) are selected as new medoids. Specifically, for each 𝑐𝑐 ∈ {1, … ,𝐶𝐶}, the index 𝑗𝑗𝑐𝑐 satisfying 𝑗𝑗𝑐𝑐 =

argmin1≤𝑗𝑗≤𝑠𝑠 ∑𝑖𝑖=1

𝑠𝑠
𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑝𝑝(𝑋𝑋𝑡𝑡

(𝑖𝑖),𝑋𝑋𝑡𝑡
(𝑗𝑗)),𝑝𝑝 = 1,2. This two-step procedure is repeated until there is no change in the medoids 

or a maximum number of iterations is reached. An outline of the corresponding clustering algorithm is given in Algorithm 
1. 
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4. Simulation study 
In this section, we carry out a set of simulations with the aim of evaluating the behaviour of both 𝑑𝑑1 and 𝑑𝑑2 in different 

scenarios of OTS clustering. First we describe some alternative dissimilarities that we consider for comparison purposes. 
Next we explain how the performance of the metrics is measured along with the corresponding simulation mechanism and 
results. 

 
4.1. Alternative metrics  

To shed light on the performance of the proposed fuzzy clustering algorithm, it was compared with some other models 
based on alternative dissimilarities. The corresponding approaches are described below.  

 
•  A procedure employing the probability mass function. This method considers a dissimilarity defined in the same way 

as 𝑑𝑑𝑂𝑂, but replacing the quantities 𝑓𝑓𝑖𝑖
(𝑘𝑘)

 and 𝑓𝑓𝑖𝑖𝑖𝑖
(𝑘𝑘)

(𝑙𝑙) by the estimates 𝑝𝑝𝑖𝑖
(𝑘𝑘)

 and 𝑝𝑝𝑖𝑖𝑖𝑖
(𝑘𝑘)

(𝑙𝑙), respectively. The corresponding 

metric is called 𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃. Note that distance 𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃 is still well defined when treating with nominal time series, thus ignoring 

the underlying ordering. Therefore, performance of 𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃 is a straightforward benchmark for the proposed metric 𝑑𝑑1, 
which is specifically designed to deal with ordinal series.  

 
•  Autocorrelation-based clustering. [7] proposed a distance measure between time series based on the autocorrelation 

function. Specifically, each time series is described by means of a vector (𝜌𝜌(𝑙𝑙1), … , 𝜌𝜌(𝑙𝑙𝐿𝐿)) whose components are the 
estimated autocorrelations for a given set of lags. The metric is defined as the squared Euclidean distance between the 

corresponding vectors. We denote this dissimilarity as 𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴. Note that 𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴 is only defined for numerical time series, but 
the distance can be easily computed in the ordinal case by considering the associated count time series (see Section 2.1).   

 

Algorithm 1.The fuzzy 𝐶𝐶-medoids algorithm based on the proposed distances. 
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• Quantile-based clustering. [8] introduced a clustering method using a dissimilarity based on quantile dependence. 
Specifically, each series is replaced by a feature vector containing estimates of the so-called quantile autocovariance 
function for several pairs of probability levels (𝜏𝜏, 𝜏𝜏′) ∈ [0,1]2 and a fixed set of lags. The proposed metric, denoted by 

𝑑𝑑𝑄𝑄𝑄𝑄𝑄𝑄 , is defined as the squared Euclidean distance between two vector representations. As in the case of 𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴 , 

computation of distance 𝑑𝑑𝑄𝑄𝑄𝑄𝑄𝑄 must be carried out by considering the corresponding count time series. Several time series 
clustering procedures employing quantile-based features have been proposed in the literature [9, 10, 11]. This type of 
methods usually show a great performance when the clusters are characterised by different nonlinear structures.  

 
4.2. Experimental design and results 

In this section, the performance of metrics 𝑑𝑑1 and 𝑑𝑑2  is analysed in a simulation study. We consider three simple 
scenarios consisting of four clusters represented by the same type of generating processes, denoted by 𝒞𝒞1, 𝒞𝒞2, 𝒞𝒞3 and 𝒞𝒞4. 
Each one of the groups contains 5 OTS, which gives rise to a set of 20 OTS to be subject to clustering. The generating models 
concerning the count process {𝐶𝐶𝑡𝑡}𝑡𝑡∈ℤ in each group are given below for each one of the scenarios. 

 
• Scenario 1. Fuzzy clustering of OTS based on binomial AR(𝑝𝑝) models. Let 𝜋𝜋 ∈ (0,1), 𝜌𝜌 ∈ (𝑚𝑚𝑚𝑚𝑚𝑚{ −𝜋𝜋

1−𝜋𝜋
, 1−𝜋𝜋
𝜋𝜋

},1), 

𝛽𝛽 = 𝜋𝜋(1 − 𝜌𝜌), 𝛼𝛼 = 𝛽𝛽 + 𝜌𝜌. Let the count process {𝐶𝐶𝑡𝑡}𝑡𝑡∈ℤ be defined by the recursion 𝐶𝐶𝑡𝑡 = ∑
𝑖𝑖=1

𝑝𝑝
𝐷𝐷𝑡𝑡,𝑖𝑖(𝛼𝛼⊙𝑡𝑡 𝐶𝐶𝑡𝑡−𝑖𝑖 +

𝛽𝛽⊙𝑡𝑡 (𝑛𝑛 − 𝐶𝐶𝑡𝑡−𝑖𝑖)) , where the (𝐷𝐷𝑡𝑡,1, … ,𝐷𝐷𝑡𝑡,𝑝𝑝)  are independent variables which are distributed according to 
MULT(1;𝜙𝜙1, … ,𝜙𝜙𝑝𝑝) with 𝜙𝜙1 + ⋯+ 𝜙𝜙𝑝𝑝 = 1 and ⊙𝑡𝑡 denotes the binomial thinning operator performed at a given 

time 𝑡𝑡 . Specifically, for a random variable 𝑌𝑌 with range {0, … ,𝑛𝑛′} and 𝛼𝛼′ ∈ (0,1), the binomial thinning operator, 

denoted by ⊙, is defined as 𝛼𝛼′ ⊙ 𝑌𝑌 = ∑
𝑖𝑖=1

𝑌𝑌
𝑍𝑍𝑖𝑖, where the 𝑍𝑍𝑖𝑖 are independent random variables following a Bernoulli 

distribution with parameter 𝛼𝛼′. The processes considered in this scenario are two binomial AR(1) models and two binomial 
AR( 2 ) models with vectors of coefficients given by 𝒞𝒞1: (𝛼𝛼,𝛽𝛽) = (0.32,0.17) , 𝒞𝒞2: (𝛼𝛼,𝛽𝛽) = (0.38,0.21) , 
𝒞𝒞3: (𝛼𝛼,𝛽𝛽,𝜙𝜙1,𝜙𝜙2) = (0.20,0.09,0.1,0.9) and 𝒞𝒞4: (𝛼𝛼,𝛽𝛽,𝜙𝜙1,𝜙𝜙2) = (0.26,0.13,0.5,0.5), respectively. 

 
• Scenario 2. Fuzzy clustering of OTS based on binomial INARCH(𝑝𝑝) models. Let 𝛽𝛽,𝛼𝛼1, … ,𝛼𝛼𝑝𝑝 be real numbers such 

that 𝛽𝛽,𝛽𝛽 + ∑
𝑖𝑖=1

𝑝𝑝
𝛼𝛼𝑖𝑖 ∈ (0,1) , and assume that the count process {𝐶𝐶𝑡𝑡}𝑡𝑡∈ℤ  verifies 𝐶𝐶𝑡𝑡|𝐶𝐶𝑡𝑡−1,𝐶𝐶𝑡𝑡−2, … ∼ Bin(𝑛𝑛,𝛽𝛽 +

1
𝑝𝑝 ∑𝑖𝑖=1

𝑝𝑝
𝛼𝛼𝑖𝑖𝐶𝐶𝑡𝑡−𝑖𝑖). The considered processes are two binomial INARCH(1) models and two binomial INARCH(2) models 

with vectors of coefficients given by 𝒞𝒞1: (𝛼𝛼1,𝛽𝛽) = (0.30,0.35) , 𝒞𝒞2: (𝛼𝛼1,𝛽𝛽) = (0.30,0.40) , 𝒞𝒞3: (𝛼𝛼1,𝛼𝛼2,𝛽𝛽) =
(0.1,0.1,0.2) and 𝒞𝒞4: (𝛼𝛼1,𝛼𝛼2,𝛽𝛽) = (0.1,0.1,0.4), respectively. 

 
• Scenario 3. Fuzzy clustering of OTS based on ordinal logit AR(1) models. Let {𝐶𝐶𝑡𝑡}𝑡𝑡∈ℤ be a count process and denote 

by {𝒀𝒀𝑡𝑡 = (𝑌𝑌𝑡𝑡,0, … ,𝑌𝑌𝑡𝑡,𝑛𝑛)}𝑡𝑡∈ℤ  its binarization (i.e., 𝐶𝐶𝑡𝑡 = 𝑘𝑘 , if and only if 𝑌𝑌𝑡𝑡,𝑘𝑘 = 1 and 𝑌𝑌𝑡𝑡,𝑘𝑘′ = 0, 𝑘𝑘′ ≠ 𝑘𝑘) and by 

{𝒀𝒀𝑡𝑡∗ = (𝑌𝑌𝑡𝑡,0, … ,𝑌𝑌𝑡𝑡,𝑛𝑛−1)}𝑡𝑡∈ℤ  its reduced binarization. Let the process {𝑄𝑄𝑡𝑡}𝑡𝑡∈ℤ  be formed by independent variables 
following a standard logistic distribution and assume that 𝐶𝐶𝑡𝑡 = 𝑠𝑠𝑗𝑗if and only if𝑄𝑄𝑡𝑡 − 𝒀𝒀𝑡𝑡∗𝜶𝜶⊺ = [𝜂𝜂𝑗𝑗−1, 𝜂𝜂𝑗𝑗), where 𝜶𝜶 =
(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) ∈ ℝ𝑛𝑛  and −∞ = 𝜂𝜂−1 < 𝜂𝜂0 < ⋯ < 𝜂𝜂𝑛𝑛−1 < 𝜂𝜂𝑛𝑛 = +∞  are threshold parameters which can be 
represented by means of the vector 𝜼𝜼 = (𝜂𝜂0, … , 𝜂𝜂𝑛𝑛−1). The considered processes are four 6-state ordinal logit AR(1) 
models with vector of coefficients 𝜶𝜶 = (−2,−1,0,1,2)  and vector of thresholds given by 𝒞𝒞1:𝜼𝜼 =
(0.4,0.8,1.2,1.6,2), 𝒞𝒞2:𝜼𝜼 = (0.6,1.2,1.8,2.4,3), 𝒞𝒞3:𝜼𝜼 = (0.8,1.6,2.4,3.2,4) and 𝒞𝒞4:𝜼𝜼 = (1,2,3,4,5).  
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The simulation study was carried out as follows. For each scenario, 5 OTS of length 𝑇𝑇 = 600 were generated from 

each process. In all cases, the range of the count process {𝐶𝐶𝑡𝑡}𝑡𝑡∈ℤ was set to {0,1, … ,5}, giving rise to ordinal realisations 
with range {𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠5} . Several values of the fuzziness parameter 𝑚𝑚  were considered, namely 𝑚𝑚 ∈
{1.2,1.4,1.6,1.8,2}. Given a scenario and a value for 𝑚𝑚, 200 simulations were carried out. In each trial, the fuzzy 𝐶𝐶-

medoids algorithm based on 𝑑𝑑1, 𝑑𝑑2, 𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃, 𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑑𝑑𝑄𝑄𝑄𝑄𝑄𝑄 was applied by using the corresponding value of 𝑚𝑚 as input. 
The number of clusters was set to 𝐶𝐶 = 4. The collection of lags ℒ was set to ℒ = {1,2} in Scenarios 1 and 2 and to ℒ =
{1} in Scenario 3, thus considering the maximum number of defining lags existing in each scenario. The effectiveness of 
each clustering procedure was assessed by means of the fuzzy extension of the Adjusted Rand Index (ARIF). Computation 

of dissimilarity 𝑑𝑑𝑄𝑄𝑄𝑄𝑄𝑄 requires fixing a set of probability levels. In this regard, we executed the corresponding fuzzy 𝐶𝐶-
medoids algorithm by considering the sets 𝒯𝒯1 = {0.1,0.5,0.9}, 𝒯𝒯2 = {0.3,0.5,0.7} and 𝒯𝒯3 = {0.4,0.8} independently. 
Throughout the paper, only the results corresponding to the set associated with the highest average value for ARIF are 
presented. 

Average values of ARIF are given in Table 2. Overall, the proposed metrics outperform the alternative dissimilarities 

by a considerable margin. The distance based on cumulative probabilities 𝑑𝑑1 achieves the best scores in Scenario 1, while 

no significant differences are observed between 𝑑𝑑1 and 𝑑𝑑2 in Scenarios 2 and 3. In sum, results in Table 2 highlight the 
importance of considering dissimilarities specifically designed to deal with OTS (i.e., taking into account the underlying 
ordering existing in the range of the series) when performing clustering of ordinal series. It is worth highlighting that similar 
conclusions are reached by considering different values for 𝑇𝑇 and alternative clustering quality indexes. 

 
5. Conclusions 

In this paper, we have proposed two novel distances be- tween OTS which automatically take advantage of the 
underlying ordering existing in the series range. Both dissimilarities are used as input to the classical fuzzy 𝐶𝐶-medoids 
algorithm, which allows for the assignment of gradual memberships of the OTS to the different groups. This is particularly 
useful when dealing with time series datasets, where large amounts of uncertainty are frequent due to regime shifts. To assess 
the performance of the clustering algorithms, a simulation study including different types of ordinal processes was 
considered. The methods were compared with clustering algorithms based on alternative dissimilarities. Overall, the 
proposed clustering algorithms showed the best performance. Specifically, they outperformed some techniques specifically 
designed to deal with real-valued and with nominal time series.  
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