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Abstract 
When working with multivariate time series with a significant number of lag components, the presence of multicollinearity among 

predictor lagged variables is likely. This underscores the requirement for parsimonious models in time series models that allow for 

parameter reduction. Diagonal Vector Autoregressive (VAR) and Multivariate Autoregressive Distributed Lag (MARDL) models are 

subclasses of general multivariate time series models with a significant number of lagged variables that can be identified when the 

coefficient matrices' parameters are restricted to the diagonal elements. The upper and lower diagonal VAR and MARDL models, as well 

as their variances, are derived. The prerequisites for identifying the diagonal VAR and MARDL models were found in this paper, and 

the models' validity was shown. To compare the performances of the new classes of multivariate lag models, data from certain 

macroeconomic variables such as Nigeria Gross Domestic Product (GDP), Crude Oil Petroleum (C/PET), Agriculture (AGRIC), and 

Telecommunication (TELECOM) are used after the first order difference of the logarithm of the series to achieve stationarity. The models 

were estimated, and the variances of the processes and errors were determined using the model parameters. The results show that the two 

models have almost the same comparative advantage. As a result, the two models complement each other when modelling multivariate 

lag variables.   
 
Keywords: Upper Diagonal VAR Models, Lower Diagonal VAR Models, Upper Diagonal MARDL Models, Lower 

Diagonal MARDL Models, Variable and Error Variances. 

 

Introduction 
Multivariate Autoregressive Distributed Lag Models (MARDLM) are models for multiple responses that are based on 

the lagged and non-lagged terms of the predictor variables and solely the lagged terms of the response. Each time variable 

in a multivariate time series is a linear mixture of its lagged terms and other lagged terms. Multivariate Autoregressive 

Distributed Lag Models are a combination of Multivariate Linear Regression Models (MLRM) and Vector Autoregressive 

Models (VARM). The Multivariate Linear Regression Models express a linear relationship between the current time of the 

response and the predictor variables. Vector Autoregressive Models are well-known multivariate time series models that are 

used to represent a variety of time series characterised by autoregressive processes. The models are an extension of a 

univariate time series model with the response variable determined by its lag components. The feed-forward and feed-back 

mechanism, as well as the interdependence established between the vectors of responses and predictors, are significant 

features of VAR models. In vector Autoregressive Models, each response variable is a linear combination of its lag terms, 

predictors, and an error term, accounting for the contributions of the response and predictors' past values, which are always 

represented in the form of multiple linear regression model. VAR models are a type of modelling and forecasting tool that 

focuses on several time series and frequently employs a multiple regression strategy based on [1]. [2] created Distributed 

Lag Models to express the present-time influence of predictor factors in a multiple linear relationship between the response 

and a group of predictor variables. MARDLM differs from VARM in that it incorporates the predictor variable's current time 

in each independent variable, whereas VARM limits the independent variables to predictor lagged terms. This is true in the 

sense that there is always a causal relationship between the predictor variables' present time and the response. 

 

Multivariate diagonal time series models limit and restrict the number of parameters in the coefficient matrices. When 

the matrix coefficients are restricted to the major diagonal, the model becomes a pure diagonal multivariate time series model. 

If the parameters in the matrix of coefficients are limited to the upper or lower diagonal, the models are referred to as upper 

or lower diagonal multivariate time series models, respectively.  Depending on the specification, it could be the principal, 

upper, or lower diagonal elements of the coefficient matrices. There is a special instance of multiple time series models with 
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diagonal autoregressive and moving average parameter matrices, as proposed by [3]. The models are known as MTS-D 

models, and their flexibility and utility have been proved in the context of a comparative market situation with five sales 

series. In multivariate time series, the three diagonal models are pure diagonal, upper diagonal, and lower diagonal. 

 

Aside from VAR or MARDL models, this paper discusses covariance analysis of the square of only diagonal bilinear 

time series models while investigating the features of bilinear time series models by [4]. The properties of the squares of the 

linear moving average process were compared to the squares of the exclusively diagonal bilinear process in the article. The 

stability analysis of the first-order periodic autoregressive diagonal bilinear model by [5] is also on diagonal models. The 

research presented a comprehensive framework of stability that incorporates the majority of the probability features 

examined for the pure diagonal bilinear model.  [6] proposed a criterion for stationarity and invertibility for pure diagonal 

time series models. For any pure diagonal bilinear process, the covariance structure of pure diagonal bilinear models was 

determined and presented. [7] investigated the theoretical and actual differences in risk management between Diagonal and 

Full BEKK. They used simulated financial returns series to compare estimates of conditional variances and covariances from 

DBEKK and Full BEKK.   Full BEKK conditional variance estimates are lower in the left tail and higher in the right tail 

than DBEKK estimates. Recent applications of multivariate time series models include [8], [9]. Diagonal Multivariate 

Generalised Autoregressive Conditional Heteroskedasticity Models were developed as a subclass of conventional MGARCH 

models by [10]. The models fared well in comparison to the Full MGARCH models.  

 

Earlier research looked at diagonal VAR models. The diagonal VAR and MARDL models are required to compare the 

performance of the two models using variance properties. The objective of this work is the investigation of upper and lower 

diagonal VAR and MARDL models, as well as their variance properties. 

 

2. Model Derivations 

(a) Generalized VAR Models 

 

Definition 

Let 𝑍𝑡 = (𝑍1𝑡 , 𝑍2𝑡 , … , 𝑍𝑚𝑡)
𝐼 be the vector of response time variables, ∅ = (∅𝑘.𝑖𝑗) is the coefficients vector, 𝑍𝑡−𝑘 =

(𝑍1𝑡−𝑘 , 𝑍2𝑡−𝑘 , … , 𝑍𝑛𝑡−𝑘)
𝐼 is defined as the vector of the predictive lag time variables, 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑚)

𝐼 is the vector of 

constants and 𝜀𝑡 = (𝜀𝑡1, 𝜀2𝑡, … , 𝜀𝑚𝑡)
𝐼 is the vector of error terms associated with the vector of response time variables. The 

above definition is reduced to the following model,  

 

𝑍𝑖𝑡 = 𝛿𝑖 +∑∑∅𝑘.𝑖𝑗𝑍𝑗𝑡−𝑘 + 𝜀𝑖𝑡 , 𝑖

𝑛

𝑗=1

𝑝

𝑘=1

= 1,… ,𝑚                                                                                                                                        (1) 
 

∅𝑘.𝑖𝑗 are parameters of contribution of 𝑗′𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝑡𝑜 𝑖′𝑠 𝑟𝑒𝑠𝑝𝑛𝑠𝑒𝑠 𝑎𝑡 𝑘 𝑙𝑎𝑔𝑠. 𝛿𝑖(𝑖=1,…,𝑚) are constants. 

Equation (1) is the general Vector Autoregressive Models (VARM). 

 

i. Upper Diagonal VAR Models and Their Variances 

This section considers the conditions for identification of the upper diagonal VAR models from the general form. 

From Equation (1), the following set of models is obtained 

 

 𝑍𝑖𝑡 =

{
 
 

 
 
𝛿1 + ∅𝑘.1𝑗𝑍𝑗𝑡−𝑘 + 𝜀1𝑡 , 𝑖 = 1; 𝑗 = 1,… , 𝑛; 𝑘 = 1,… , 𝑝

𝛿2 + ∅𝑘.2𝑗𝑍𝑗𝑡−𝑘 + 𝜀2𝑡 , 𝑖 = 2; 𝑗 = 2,… , 𝑛; 𝑘 = 1,… , 𝑝

𝛿3 + ∅𝑘.3𝑗𝑍𝑗𝑡−𝑘 + 𝜀3𝑡 , 𝑖 = 3; 𝑗 = 3,… , 𝑛; 𝑘 = 1,… , 𝑝

⋮ 
𝛿𝑚 + ∅𝑘.𝑚𝑗𝑍𝑗𝑡−𝑘 + 𝜀𝑚𝑡, 𝑖 = 𝑚; 𝑗 = 𝑛; 𝑘 = 1,… , 𝑝

                                                                                            (2) 

The parameters are as defined in Equation (1). 



 

112-3 

Equation (2) defines a set of Upper Diagonal Vector Autoregressive Models. 

 

Proof: 

Given Equation (1) 

𝑍𝑖𝑡 = 𝛿𝑖 +∑∑∅𝑘.𝑖𝑗𝑍𝑗𝑡−𝑘 + 𝜀𝑖𝑡 , 𝑖 = 1,… ,𝑚

𝑛

𝑗=1

𝑝

𝑘=1

                                                                          

Case 1: 𝑖𝑓 𝑖 = 1; 𝑗 = 1,… , 𝑛; 𝑘 = 1,… , 𝑝  

𝑍1𝑡 = 𝛿1 + ∅1.11𝑍1𝑡−1 + ∅1.12𝑍2𝑡−1 +⋯+ ∅1.1𝑛𝑍𝑛𝑡−1 + ∅2.11𝑍1𝑡−2 + ∅2.12𝑍2𝑡−2 +⋯+∅2.1𝑛𝑍𝑛𝑡−2 +⋯
+∅𝑝.11𝑍1𝑡−𝑝 + ∅𝑝.12𝑍2𝑡−𝑝 +⋯+ ∅𝑝.1𝑛𝑍𝑛𝑡−𝑝
+ 𝜀1𝑡                                                                                                                   (3) 

 

𝑍1𝑡 = 𝛿1 +∑∑∅𝑘.1𝑗𝑍𝑗𝑡−𝑘

𝑛

𝑗=1

𝑝

𝑘=1

+ 𝜀1𝑡                                                                                                                                                          (4) 
 

Case 2: 𝑖𝑓 𝑖 = 2; 𝑗 = 2,… , 𝑛; 𝑘 = 1,… , 𝑝  

𝑍2𝑡 = 𝛿2 + ∅1.22𝑍2𝑡−1 + ∅1.23𝑍3𝑡−1 +⋯+ ∅1.2𝑛𝑍𝑛𝑡−1 + ∅2.22𝑍2𝑡−2 + ∅2.23𝑍3𝑡−2 +⋯+ ∅2.2𝑛𝑍𝑛𝑡−2 +⋯
+ ∅𝑝.22𝑍2𝑡−𝑝 + ∅𝑝.23𝑍3𝑡−𝑝 +⋯+ ∅𝑝.2𝑛𝑍𝑛𝑡−𝑝
+ 𝜀2𝑡                                                                                                                  (5) 

 

𝑍2𝑡 = 𝛿2 +∑∑∅𝑘.2𝑗𝑍𝑗𝑡−𝑘 + 𝜀2𝑡

𝑛

𝑗=2

𝑝

𝑘=1

                                                                                                                                                      (6) 

 

Case 3: 𝑖𝑓 𝑖 = 𝑚; 𝑗 = 𝑛; 𝑘 = 1,… , 𝑝  

𝑍𝑚𝑡 = 𝛿𝑚 + ∅1.𝑚𝑛𝑍𝑛𝑡−1 + ∅2.𝑚𝑛𝑍𝑛𝑡−2 +⋯+ ∅𝑝.𝑚𝑛𝑍𝑛𝑡−𝑝 + 𝜀𝑚𝑡                                                                                       (7) 

 

𝑍𝑚𝑡 = 𝛿𝑚 +∑∅𝑘.3𝑗𝑍𝑗𝑡−𝑘

𝑝

𝑘=1

+ 𝜀𝑚𝑡                                                                                                                                                          (8) 

 

Equations (4), (6) and (8) are a set of Upper Diagonal VAR Models, and these complete the proof. 

 

Variances of Upper Diagonal VAR Models 

Variances of 𝒁𝒊𝒕: 
Let 𝑍𝑖𝑡 in Equation (1) be a stationary process that is distributed about the origin such that 𝐸(𝑍𝑖𝑡) = 0, => 𝛿1 = 𝛿2 =

⋯ = 𝛿𝑚 = 0. 

 

Case1: 𝑓𝑜𝑟 𝑖 = 1,  multiply Equation (3) by 𝑍1𝑡 and take the expectations. 

𝐸(𝑍1𝑡𝑍1𝑡) = 𝐸[𝑍1𝑡(∅1.11𝑍1𝑡−1 + ∅1.12𝑍2𝑡−1 +⋯+ ∅1.1𝑛𝑍𝑛𝑡−1 + ∅2.11𝑍1𝑡−2 + ∅2.12𝑍2𝑡−2 +⋯+ ∅2.1𝑛𝑍𝑛𝑡−2 +⋯+
∅𝑝.11𝑍1𝑡−𝑝 + ∅𝑝.12𝑍2𝑡−𝑝 +⋯+ ∅𝑝.1𝑛𝑍𝑛𝑡−𝑝 + 𝜀1𝑡)]  

   
𝜉1𝑡,1𝑡 = ∅1.11𝜉1𝑡,1𝑡(1) + ∅1.12𝜉1𝑡,2𝑡(1) +⋯+ ∅1.1𝑛𝜉1𝑡,𝑛𝑡(1) + ∅2.11𝜉1𝑡,1𝑡(2) + ∅2.12𝜉1𝑡,2𝑡(2) +⋯+ ∅2.1𝑛𝜉1𝑡,𝑛𝑡(2) +⋯

+∅𝑝.11𝜉1𝑡,1𝑡(𝑝) + ∅𝑝.12𝜉1𝑡,2𝑡(𝑝) +⋯+ ∅𝑝.1𝑛𝜉1𝑡,𝑛𝑡(𝑝) + 𝜎𝜀1𝑡
2                                                                             (9) 

 

 𝐸(𝑍1𝑡𝜀1𝑡) = 𝜎𝜀1𝑡
2  (from correlated stationary processes) 
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𝜉1𝑡,1𝑡 =∑∑∅𝑘.1𝑗𝜉1𝑡,𝑗𝑡(𝑘)

𝑛

𝑗=1

+ 𝜎𝜀1𝑡
2                                                                                                                                                       (10)

𝑝

𝑘=1

 

 

Case 2: 𝑓𝑜𝑟 𝑖 = 2 𝑎𝑛𝑑 𝛿2 = 0,  multiply Equation (5) by 𝑍2𝑡 and take the expectations. 

𝐸(𝑍2𝑡𝑍2𝑡) = 𝐸[𝑍2𝑡(∅1.22𝑍2𝑡−1 + ∅1.23𝑍3𝑡−1 +⋯+ ∅1.2𝑛𝑍𝑛𝑡−1 + ∅2.22𝑍2𝑡−2 + ∅2.23𝑍3𝑡−2 +⋯+ ∅2.2𝑛𝑍𝑛𝑡−2 +⋯+
∅𝑝.22𝑍2𝑡−𝑝 + ∅𝑝.23𝑍3𝑡−𝑝 +⋯+ ∅𝑝.2𝑛𝑍𝑛𝑡−𝑝 + 𝜀2𝑡)]  
 

𝜉2𝑡,2𝑡 = ∅1.22𝜉2𝑡,2𝑡(1) + ∅1.23𝜉2𝑡,3𝑡(1) +⋯+∅1.2𝑛𝜉2𝑡,𝑛𝑡(1) + ∅2.22𝜉2𝑡,2𝑡(2) + ∅2.23𝜉2𝑡,3𝑡(2) +⋯+ ∅2.2𝑛𝜉2𝑡,𝑛𝑡(2) +⋯

+ ∅𝑝.22𝜉2𝑡,2𝑡(𝑝) + ∅𝑝.23𝜉2𝑡,3𝑡(𝑝) +⋯+ ∅𝑝.2𝑛𝜉2𝑡,𝑛𝑡(𝑝)
+ 𝜎𝜀2𝑡

2                                                                              (11) 

 

where, 𝐸(𝑍2𝑡𝜀2𝑡) = 𝜎𝜀2𝑡
2  (from correlated stationary processes) 

 

𝜉2𝑡,2𝑡 =∑∑∅𝑘.2𝑗𝜉2𝑡,𝑗𝑡(𝑘) + 𝜎𝜀2𝑡
2

𝑛

𝑗=2

                                                                                                                                                    (12)

𝑝

𝑘=1

 

 

Case 3: 𝑓𝑜𝑟 𝑖, 𝑗 = 𝑚, 𝑛 (𝑚 = 𝑛) 𝑎𝑛𝑑 𝛿𝑚 = 0,  multiply Equation (7) by 𝑍𝑚𝑡 and take the expectations. 

𝐸(𝑍𝑚𝑡𝑍𝑚𝑡) = 𝐸[𝑍𝑚𝑡(∅1.𝑚𝑛𝑍𝑛𝑡−1 + ∅2.𝑚𝑛𝑍𝑛𝑡−2 +⋯+ ∅𝑝.𝑚𝑛𝑍𝑛𝑡−𝑝 + 𝜀𝑚𝑡)] 

                                                                                                                                                          
𝜉𝑚𝑡,𝑚𝑡 = ∅1.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(1) + ∅2.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(2) +⋯+ ∅𝑝.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(𝑝) + 𝜎𝜀𝑚𝑡

2                                                                            (13) 

 

where, 𝐸(𝑍𝑚𝑡𝜀𝑚𝑡) = 𝜎𝜀𝑚𝑡
2  (from correlated stationary processes) 

 

𝜉𝑚𝑡,𝑚𝑡 =∑∅𝑘.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(𝑘)

𝑝

𝑘=1

+ 𝜎𝜀𝑚𝑡
2                                                                                                                                                        (14)   

 

Equations (10), (12) and (14) are upper diagonal variances of 𝑍1𝑡 , 𝑍2𝑡  𝑎𝑛𝑑 𝑍𝑚𝑡  respectively. 

 

ii. Lower Diagonal VAR Models and Their Variances 

This section considers the conditions for identification of the upper diagonal VAR models from the general form. From 

Equation (1), the following set of models is obtained 

 

 𝑍𝑖𝑡 =

{
 
 

 
 

𝛿1 + ∅𝑘.1𝑗𝑍𝑗𝑡−𝑘 + 𝜀1𝑡, 𝑖 = 1; 𝑗 = 1; 𝑘 = 1,… , 𝑝

𝛿2 + ∅𝑘.2𝑗𝑍𝑗𝑡−𝑘 + 𝜀2𝑡 , 𝑖 = 2; 𝑗 = 1, 2; 𝑘 = 1,… , 𝑝

𝛿3 + ∅𝑘.3𝑗𝑍𝑗𝑡−𝑘 + 𝜀3𝑡 , 𝑖 = 3; 𝑗 = 1, 2, 3; 𝑘 = 1,… , 𝑝

⋮ 
𝛿𝑚 + ∅𝑘.𝑚𝑗𝑍𝑗𝑡−𝑘 + 𝜀𝑚𝑡, 𝑖 = 𝑚; 𝑗 = 1, 2, … , 𝑛; 𝑘 = 1,… , 𝑝

                                                                                         (15)                             

 

Equation (15) defines a set of Lower Diagonal Vector Autoregressive Models. 

 

Proof: 

Given Equation (1)               
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𝑍𝑖𝑡 = 𝛿𝑖 +∑∑∅𝑘.𝑖𝑗𝑍𝑗𝑡−𝑘 + 𝜀𝑖𝑡 , 𝑖 = 1,… ,𝑚

𝑛

𝑗=1

𝑝

𝑘=1

                                                                          

The parameters are as defined in Equation (1). 

Case 1: 𝑖𝑓 𝑖 = 1; 𝑗 = 1; 𝑘 = 1,… , 𝑝  

𝑍1𝑡 = 𝛿1 + ∅1.11𝑍1𝑡−1 + ∅2.11𝑍1𝑡−2 +⋯+ ∅𝑝.11𝑍1𝑡−𝑝
+ 𝜀1𝑡                                                                                                     (16) 

                                                                                                                                                          

𝑍1𝑡 = 𝛿1 + ∑∅𝑘.11𝑍1𝑡−𝑘

𝑝

𝑘=1

+ 𝜀1𝑡                                                                                                                                                              (17) 
 

Case 2: 𝑖𝑓 𝑖 = 2; 𝑗 = 1, 2; 𝑘 = 1,… , 𝑝  

 

𝑍2𝑡 = 𝛿2 + ∅1.21𝑍1𝑡−1 + ∅1.22𝑍2𝑡−1 + ∅2.21𝑍1𝑡−2 + ∅2.22𝑍2𝑡−2 +⋯+ ∅𝑝.21𝑍1𝑡−𝑝 + ∅𝑝.22𝑍2𝑡−𝑝
+ 𝜀2𝑡                                                                                                                                                                        (18) 
                                                                                                                                                           

𝑍2𝑡 = 𝛿2 +∑∑∅𝑘.2𝑗𝑍𝑗𝑡−𝑘 + 𝜀2𝑡

2

𝑗=1

𝑝

𝑘=1

                                                                                                                                                  (19) 

 

Case 3: 𝑖𝑓 𝑖 = 𝑚; 𝑗 = 1, 2, … , 𝑛; 𝑘 = 1,… , 𝑝  

𝑍𝑚𝑡 = 𝛿𝑚 + ∅1.𝑚1𝑍1𝑡−1 + ∅1.𝑚2𝑍2𝑡−1 +⋯+∅1.𝑚𝑛𝑍𝑛𝑡−1 + ∅2.𝑚1𝑍1𝑡−2 + ∅2.𝑚2𝑍2𝑡−2 +⋯+ ∅2.𝑚𝑛𝑍𝑛𝑡−2
+…+ ∅𝑝.𝑚1𝑍1𝑡−𝑝 + ∅𝑝.𝑚2𝑍2𝑡−𝑝 +⋯+ ∅𝑝.𝑚𝑛𝑍𝑛𝑡−𝑝
+ 𝜀𝑚𝑡                                                                     (20) 

 

𝑍𝑚𝑡 = 𝛿𝑚 +∑∑∅𝑘.𝑚𝑗𝑍𝑗𝑡−𝑘

𝑛

𝑗=1

𝑝

𝑘=1

+ 𝜀𝑚𝑡                                                                                                                                                  (21) 
 

Equations (17), (19) and (21) define a set Lower Diagonal VAR Models, and these complete the proof. 

 

Variances of Lower Diagonal VAR Models 

Variances of 𝒁𝒊𝒕: 
Let 𝑍𝑖𝑡 in Equation (3) be a stationary process that is distributed about the origin such that 𝐸(𝑍𝑖𝑡) = 0, => 𝛿1 = 𝛿2 = ⋯ =
𝛿𝑚 = 0. 

Case1: 𝑓𝑜𝑟 𝑖 = 1,  multiply Equation (16) by 𝑍1𝑡 and take the expectations. 

 𝐸(𝑍1𝑡𝑍1𝑡) = 𝐸[𝑍1𝑡(∅1.11𝑍1𝑡−1 + ∅2.11𝑍1𝑡−2 +⋯+ ∅𝑝.11𝑍1𝑡−𝑝 + 𝜀1𝑡)]  

                                                                                                                                                          
𝜉1𝑡,1𝑡 = ∅1.11𝜉1𝑡,1𝑡(1) + ∅2.11𝜉1𝑡,1𝑡(2) +⋯+ ∅𝑝.11𝜉1𝑡,1𝑡(𝑝)

+ 𝜎𝜀1𝑡
2                                                                                           (22) 

 

where, 𝐸(𝑍1𝑡𝜀1𝑡) = 𝜎𝜀1𝑡
2  (from correlated stationary process) 
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𝜉1𝑡,1𝑡 =∑∅𝑘.11𝜉1𝑡,1𝑡(𝑘)

𝑝

𝑘=1

+ 𝜎𝜀1𝑡
2                                                                                                                                                      (23) 

 

Case 2: 𝑓𝑜𝑟 𝑖 = 2 𝑎𝑛𝑑 𝛿2 = 0,  multiply Equation (18) by 𝑍2𝑡 and take the expectations. 

 𝐸(𝑍2𝑡𝑍2𝑡) = 𝐸[𝑍2𝑡(∅1.21𝑍1𝑡−1 + ∅1.22𝑍2𝑡−1 + ∅2.21𝑍1𝑡−2 + ∅2.22𝑍2𝑡−2 +⋯+ ∅𝑝.21𝑍1𝑡−𝑝 + ∅𝑝.22𝑍2𝑡−𝑝 + 𝜀2𝑡)] 

                                                                                                                                                       
𝜉2𝑡,2𝑡
= ∅1.21𝜉2𝑡,1𝑡(1) + ∅1.22𝜉2𝑡,2𝑡(1) + ∅2.21𝜉2𝑡,1𝑡(2) + ∅2.22𝜉2𝑡,2𝑡(2) +⋯+ ∅𝑝.21𝜉2𝑡,1𝑡(𝑝) + ∅𝑝.22𝜉2𝑡,2𝑡(𝑝)
+ 𝜎𝜀2𝑡

2                                                                                                                                                                         (24) 

 

where, 𝐸(𝑍2𝑡𝜀2𝑡) = 𝜎𝜀2𝑡
2  (from correlated stationary processes) 

 

𝜉2𝑡,2𝑡 =∑∑∅𝑘.2𝑗𝜉2𝑡,𝑗𝑡(𝑘)

2

𝑗=1

𝑝

𝑘=1

+ 𝜎𝜀2𝑡
2                                                                                                                                                   (25) 

 

Case 3: 𝑖𝑓 𝑖 = 𝑚; 𝑗 = 1, 2, … , 𝑛; 𝑘 = 1,… , 𝑝 and 𝛿𝑚 = 0, multiply Equation (20) by 𝑍𝑚𝑡 and take the expectations. 

𝐸(𝑍𝑚𝑡𝑍𝑚𝑡) = 𝐸[𝑍𝑚𝑡(∅1.𝑚1𝑍1𝑡−1 + ∅1.𝑚2𝑍2𝑡−1 +⋯+ ∅1.𝑚𝑛𝑍𝑛𝑡−1 + ∅2.𝑚1𝑍1𝑡−2 + ∅2.𝑚2𝑍2𝑡−2 +⋯+
∅2.𝑚𝑛𝑍𝑛𝑡−2 +…+ ∅𝑝.𝑚1𝑍1𝑡−𝑝 + ∅𝑝.𝑚2𝑍2𝑡−𝑝 +⋯+ ∅𝑝.𝑚𝑛𝑍𝑛𝑡−𝑝 + 𝜀𝑚𝑡 )] 

                                                                                                                                                          
𝜉𝑚𝑡,𝑚𝑡 = ∅1.𝑚1𝜉𝑚𝑡,1𝑡(1) + ∅1.𝑚2𝜉𝑚𝑡,2𝑡(1) +⋯+ ∅1.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(1) + ∅2.𝑚1𝜉𝑚𝑡,1𝑡(2) + ∅2.𝑚2𝜉𝑚𝑡,2𝑡(2) +⋯

+ ∅2.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(2) +⋯+ ∅𝑝.𝑚1𝜉𝑚𝑡,1𝑡(𝑝) + ∅𝑝.𝑚2𝜉𝑚𝑡,2𝑡(𝑝) +⋯+ ∅𝑝.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(𝑝)
+ 𝜎𝜀𝑚𝑡

2                                                      (26) 

 

where, 𝐸(𝑍𝑚𝑡𝜀𝑚𝑡) = 𝜎𝜀𝑚𝑡
2  (correlated stationary process) 

 

𝜉𝑚𝑡,𝑚𝑡 =∑∑∅𝑘.𝑚𝑗𝜉𝑚𝑡,𝑗𝑡(𝑘)

𝑛

𝑗=1

𝑝

𝑘=1

+ 𝜎𝜀𝑚𝑡
2                                                                                                                                                (27)   

Equations (23), (25) and (27) are lower diagonal variances of 𝑍1𝑡 , 𝑍2𝑡  𝑎𝑛𝑑 𝑍𝑚𝑡  𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
 
b. MARDL Models and Their Variances  
Definition 

Let 𝑍𝑡 = (𝑍1𝑡 , 𝑍2𝑡 , … , 𝑍𝑚𝑡)
𝐼 be the vector of response time variables, ∅ = (∅𝑘.𝑖𝑗) is the coefficients vector, 𝑍𝑠𝑡(𝑠 ≠ 𝑖) 

is the non-lag predictor, ∅𝑠𝑡(𝑠≠𝑖) is a vector of non-lag coefficients, 𝑍𝑡−𝑘 = (𝑍1𝑡−𝑘 , 𝑍2𝑡−𝑘 , … , 𝑍𝑛𝑡−𝑘)
𝐼 is defined as the 

vector of the predictive lag time variables, 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑚)
𝐼 is the vector of constants and 𝜀𝑡 = (𝜀𝑡1, 𝜀2𝑡 , … , 𝜀𝑚𝑡)

𝐼 is the 

vector of error terms associated with the vector of response time variables. The above definition is reduced to the following 

model, 

 

𝑍𝑖𝑡 = 𝛿𝑖 +∑∅𝑖𝑠𝑍𝑠𝑡

𝑚

𝑠=1

+∑∑∅𝑘.𝑖𝑗

𝑛

𝑗=1

𝑍𝑗𝑡−𝑘

𝑝

𝑘=1

+ 𝜀𝑗𝑡 , 𝑖 = 1,… ,𝑚(𝑚 = 𝑛), (𝑖 ≠ 𝑠)                                                                        (28) 

∅𝑖𝑠 are non-lag coefficients of the predictor variables, ∅𝑘.𝑖𝑗 are lag contributions of  𝑗 predictors to 𝑖 responses at 𝑘 lags, 

𝛿𝑖(𝑖=1,…,𝑚) are constants 
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Equation (28) is the general Multivariate Autoregressive Distributed Lag Model (MARDL) 

 
i. Upper Diagonal MARDL Models and Their Properties 

 
Model Derivation 

This section considers the conditions for identification of the upper diagonal MARDL models from the general form. 

From Equation (28), the following set of models is obtained 

 

 𝑍𝑖𝑡 =

{
 
 

 
 
𝛿1 + ∅1𝑠𝑍𝑠𝑡   +  ∅𝑘.1𝑗𝑍𝑗𝑡−𝑘 + 𝜀1𝑡, 𝑖 = 1; 𝑗 = 1,… , 𝑛; 𝑘 = 1,… , 𝑝; (𝑠 ≠ 1)

𝛿2 + ∅2𝑠𝑍𝑠𝑡   +  ∅𝑘.2𝑗𝑍𝑗𝑡−𝑘 + 𝜀2𝑡 , 𝑖 = 2; 𝑗 = 2,… , 𝑛; 𝑘 = 1,… , 𝑝; (𝑠 ≠ 2)

𝛿3 + ∅3𝑠𝑍𝑠𝑡   + ∅𝑘.3𝑗𝑍𝑗𝑡−𝑘 + 𝜀3𝑡, 𝑖 = 3; 𝑗 = 3,… , 𝑛; 𝑘 = 1,… , 𝑝; (𝑠 ≠ 3)

⋮ 
𝛿𝑚 + ∅𝑚𝑠𝑍𝑠𝑡   + ∅𝑘.𝑚𝑗𝑍𝑗𝑡−𝑘 + 𝜀𝑚𝑡,   𝑖 = 𝑚;  𝑗 = 𝑛;      𝑘 = 1,… , 𝑝; (𝑠 ≠ 𝑚)

                                                              

(29) 
 

Equation (29) defines a set of Upper Diagonal Multivariate Autoregressive Distributed Lag Models (UDMARDL).  
Proof: 

Given Equation (28) 

𝑍𝑖𝑡 = 𝛿𝑖 +∑∅𝑖𝑠𝑍𝑠𝑡

𝑚

𝑠=1

+∑∑∅𝑘.𝑖𝑗

𝑛

𝑗=1

𝑍𝑗𝑡−𝑘

𝑝

𝑘=1

+ 𝜀𝑗𝑡 , 𝑖 = 1,… ,𝑚 (𝑖 ≠ 𝑠)                   

 

Case 1: 𝑖𝑓 𝑖 = 1; ; 𝑠 = 1,… ,𝑚; 𝑗 = 1,… , 𝑛; 𝑘 = 1,… , 𝑝  

𝑍1𝑡 =   𝛿1 + ∅12𝑍2𝑡 + ∅13𝑍3𝑡+ . . . +∅1𝑛 𝑍𝑛𝑡 + ∅1.11𝑍1𝑡−1 + ∅1.12𝑍2𝑡−1 +⋯+ ∅1.1𝑛𝑌𝑛𝑡−1  + ∅2.11𝑍1𝑡−2
+ ∅2.𝑚2𝑍2𝑡−2 +⋯+ ∅2.1𝑛𝑍𝑛𝑡−2 +⋯+ ∅𝑝.11𝑍1𝑡−𝑝 + ∅𝑝.12∅2𝑡−𝑝 +⋯+ ∅𝑝.1𝑛𝑍𝑛𝑡−𝑝
+ 𝜀1𝑡                                      (30) 

 

𝑍1𝑡 = 𝛿1 +∑∅1𝑠𝑍𝑠𝑡

𝑚

𝑠=1

+∑∑∅𝑘.1𝑗

𝑛

𝑗=1

𝑍𝑗𝑡−𝑘

𝑝

𝑘=1

+ 𝜀1𝑡                                                                                                                      (31) 

 

Case 2: 𝑖𝑓 𝑖 = 2; 𝑠 = 1,… ,𝑚(𝑠 ≠ 2);  𝑗 = 2,… , 𝑛; 𝑖 = 1,… , 𝑝 , we have, 

𝑍2𝑡 =   𝛿2 + ∅21𝑍1𝑡 + ∅23𝑍3𝑡+ . . . +∅2𝑛 𝑍𝑛𝑡 + ∅1.21𝑍1𝑡−1 + ∅1.22𝑍2𝑡−1 +⋯+ ∅1.2𝑛𝑌𝑛𝑡−1  + ∅2.21𝑍1𝑡−2 + ∅2.22𝑍2𝑡−2
+⋯+ ∅2.2𝑛𝑍𝑛𝑡−2 +⋯+ ∅𝑝.21𝑍1𝑡−𝑝 + ∅𝑝.22∅2𝑡−𝑝 +⋯+ ∅𝑝.2𝑛𝑍𝑛𝑡−𝑝 + 𝜀2𝑡                                    (32) 

 

𝑍2𝑡 = 𝛿2 +∑∅2𝑠𝑍𝑠𝑡

𝑚

𝑠=1

+∑∑∅𝑘.2𝑗

𝑛

𝑗=1

𝑍𝑗𝑡−𝑘

𝑝

𝑘=1

+ 𝜀2𝑡                                                                                                                   (33) 

 

Case 3: 𝑖𝑓 𝑖 = 𝑚; 𝑠 = 1,… ,𝑚 − 1(𝑠 ≠ 𝑚);  𝑗 = 𝑛; 𝑘 = 1,… , 𝑝 we have, 

𝑍𝑚𝑡 =   𝛿𝑚 + ∅𝑚1𝑍1𝑡 + ∅𝑚2𝑍2𝑡+ . . . +∅𝑚(𝑛−1) 𝑍(𝑛−1)𝑡 + ∅1.𝑚1𝑍1𝑡−1 + ∅1.𝑚2𝑍2𝑡−1 +⋯+ ∅1.𝑚𝑛𝑌𝑛𝑡−1  + ∅2.𝑚1𝑍1𝑡−2
+ ∅2.𝑚2𝑍2𝑡−2 +⋯+ ∅2.𝑚𝑛𝑍𝑛𝑡−2 +⋯+ ∅𝑝.𝑚1𝑍1𝑡−𝑝 + ∅𝑝.𝑚2∅2𝑡−𝑝 +⋯+ ∅𝑝.𝑚𝑛𝑍𝑛𝑡−𝑝 + 𝜀𝑚𝑡  (34) 

 

𝑍𝑚𝑡 = 𝛿𝑚 +∑∅𝑚𝑠𝑍𝑠𝑡

𝑚

𝑠=1

+∑∑∅𝑘.𝑚𝑗

𝑛

𝑗=1

𝑍𝑗𝑡−𝑘

𝑝

𝑘=1

+ 𝜀𝑚𝑡                                                                                                              (35) 

Equations (31), (33) and (35) are a set of Upper Diagonal MARDL Models, and these complete the proof. 

 

Variances of Upper Diagonal MARDL Models 
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Variances of 𝒁𝒊𝒕: 
Let 𝑍𝑖𝑡 in Equation (28) be a stationary process that is distributed about the origin such that 𝐸(𝑍𝑖𝑡  ) = 0, => 𝛿1 =

𝛿2 = ⋯ = 𝛿𝑚 = 0. 

Case1: 𝑓𝑜𝑟 𝑖 = 1,  multiply Equation (30) by 𝑍1𝑡 and take the expectations. 

𝐸(𝑍1𝑡𝑍1𝑡) =    𝐸[𝑍1𝑡(∅12𝑍2𝑡 + ∅13𝑍3𝑡+ . . . +∅1𝑛 𝑍𝑛𝑡 + ∅1.11𝑍1𝑡−1 + ∅1.12𝑍2𝑡−1 +⋯+ ∅1.1𝑛𝑌𝑛𝑡−1  + ∅2.11𝑍1𝑡−2
+ ∅2.𝑚2𝑍2𝑡−2 +⋯+ ∅2.1𝑛𝑍𝑛𝑡−2 +⋯+ ∅𝑝.11𝑍1𝑡−𝑝 + ∅𝑝.12∅2𝑡−𝑝 +⋯+ ∅𝑝.1𝑛𝑍𝑛𝑡−𝑝
+ 𝜀1𝑡)]                                                  

                                                                                                                                                     
𝜉1𝑡,1𝑡 = ∅12𝜉1𝑡,2𝑡 + ∅13𝜉1𝑡,3𝑡 +⋯+ ∅1𝑛𝜉1𝑡,𝑛𝑡 + ∅1.11𝜉1𝑡,1𝑡(1) + ∅1.12𝜉1𝑡,2𝑡(1) +⋯+ ∅1.1𝑛𝜉1𝑡,𝑛𝑡(1) + ∅2.11𝜉1𝑡,1𝑡(2)

+ ∅2.12𝜉1𝑡,2𝑡(2) +⋯+ ∅2.1𝑛𝜉1𝑡,𝑛𝑡(2) +⋯+ ∅𝑝.11𝜉1𝑡,1𝑡(𝑝) + ∅𝑝.12𝜉1𝑡,2𝑡(𝑝) +⋯+ ∅𝑝.1𝑛𝜉1𝑡,𝑛𝑡(𝑝)
+ 𝜎𝜀1𝑡

2                                                                                                                                                                      (36) 

 

where, 𝐸(𝑍1𝑡𝜀1𝑡) = 𝜎𝜀1𝑡
2  (from correlated stationary processes) 

 

𝜉1𝑡,1𝑡 =∑∅1𝑠

𝑚

𝑠=1

𝜉1𝑠 +∑∑∅𝑘.1𝑗

𝑛

𝑗=1

𝜉1𝑡,𝑗𝑡(𝑘)

𝑝

𝑘=1

+ 𝜎𝜖1𝑡
2 ,                         𝑠 ≠ 1                                                                          (37) 

 

Case 2: 𝑓𝑜𝑟 𝑖 = 2, 𝛿2 = 0, multiply Equation (32) by 𝑍2𝑡 and take the expectations. 

𝐸(𝑍2𝑡𝑍2𝑡) =    𝐸[𝑍2𝑡(∅21𝑍1𝑡 + ∅23𝑍3𝑡+ . . . +∅2𝑛 𝑍𝑛𝑡 + ∅1.21𝑍1𝑡−1 + ∅1.22𝑍2𝑡−1 +⋯+ ∅1.2𝑛𝑌𝑛𝑡−1  + ∅2.21𝑍1𝑡−2
+ ∅2.22𝑍2𝑡−2 +⋯+ ∅2.2𝑛𝑍𝑛𝑡−2 +⋯+ ∅𝑝.21𝑍1𝑡−𝑝 + ∅𝑝.22∅2𝑡−𝑝 +⋯+ ∅𝑝.2𝑛𝑍𝑛𝑡−𝑝
+ 𝜀2𝑡)]                                                  

                                                                                                                                                       
𝐸(𝑍2𝑡𝑍2𝑡) = 𝐸(𝑍2𝑡

2 ) = 𝜉2𝑡,2𝑡  (Variance of 𝑍2𝑡) 
 

𝜉2𝑡,2𝑡 = ∅21𝜉2𝑡,1𝑡 + ∅23𝜉2𝑡,3𝑡 +⋯+ ∅2𝑛𝜉2𝑡,𝑛𝑡 + ∅1.21𝜉2𝑡,1𝑡(1) + ∅1.22𝜉2𝑡,2𝑡(1) +⋯+ ∅1.2𝑛𝜉2𝑡,𝑛𝑡(1) + ∅2.21𝜉2𝑡,1𝑡(2)
+ ∅2.22𝜉2𝑡,2𝑡(2) +⋯+ ∅2.2𝑛𝜉2𝑡,𝑛𝑡(2) +⋯+ ∅𝑝.21𝜉2𝑡,1𝑡(𝑝) + ∅𝑝.22𝜉2𝑡,2𝑡(𝑝) +⋯+ ∅𝑝.2𝑛𝜉2𝑡,𝑛𝑡(𝑝)
+ 𝜎𝜀2𝑡

2                                                                                                                                                                (38) 

 

where, 𝐸(𝑍2𝑡𝜀2𝑡) = 𝜎𝜀2𝑡
2  (from correlated stationary processes) 

 

𝜉2𝑡,2𝑡 =∑∅2𝑠

𝑚

𝑠=1

𝜉2𝑠 +∑∑∅𝑘.2𝑗

𝑛

𝑗=1

𝜉2𝑡,𝑗𝑡(𝑘)

𝑝

𝑘=1

+ 𝜎𝜖2𝑡
2 , 𝑠 ≠ 2                                                                               (39) 

   
Case 3: 𝑓𝑜𝑟 𝑖, 𝑗 = 𝑚, 𝑛 (𝑚 = 𝑛) 𝑎𝑛𝑑 𝛿𝑚 = 0,   
multiply Equation (34) by 𝑍𝑚𝑡 and take the expectations. 

𝐸(𝑍𝑚𝑡𝑍𝑚𝑡) =    𝐸[𝑍𝑚𝑡(∅𝑚1𝑍1𝑡 + ∅𝑚2𝑍2𝑡+ . . . +∅𝑚𝑛 𝑍𝑛𝑡 + ∅1.𝑚1𝑍1𝑡−1 + ∅1.𝑚2𝑍2𝑡−1 +⋯+ ∅1.𝑚𝑛𝑌𝑛𝑡−1  + ∅2.𝑚1𝑍1𝑡−2
+ ∅2.𝑚2𝑍2𝑡−2 +⋯+ ∅2.𝑚𝑛𝑍𝑛𝑡−2 +⋯+ ∅𝑝.𝑚1𝑍1𝑡−𝑝 + ∅𝑝.𝑚2∅2𝑡−𝑝 +⋯+ ∅𝑝.𝑚𝑛𝑍𝑛𝑡−𝑝
+ 𝜀𝑚𝑡)]                                                  

𝐸(𝑍𝑚𝑡𝑍𝑚𝑡) = 𝐸(𝑍𝑚𝑡
2 ) = 𝜉𝑚𝑡,𝑚𝑡 (Variance of 𝑍𝑚𝑡) 

 

𝜉𝑚𝑡,𝑚𝑡 = ∅𝑚1𝜉𝑚𝑡,1𝑡 + ∅𝑚2𝜉𝑚𝑡,2𝑡 +⋯+ ∅𝑚𝑛𝜉𝑚𝑡,𝑛𝑡 + ∅1.𝑚1𝜉𝑚𝑡,1𝑡(1) + ∅1.𝑚2𝜉𝑚𝑡,2𝑡(1) +⋯+ ∅1.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(1)
+ ∅2.𝑚1𝜉𝑚𝑡,1𝑡(2) + ∅2.𝑚2𝜉𝑚𝑡,2𝑡(2) +⋯+ ∅2.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(2) +⋯+ ∅𝑝.𝑚1𝜉𝑚𝑡,1𝑡(𝑝) + ∅𝑝.𝑚2𝜉𝑚𝑡,2𝑡(𝑝) +⋯

+ ∅𝑝.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(𝑝) + 𝜎𝜀𝑚𝑡
2                                                                                                                              (40) 

 

where, 𝐸(𝑍𝑚𝑡𝜀𝑚𝑡) = 𝜎𝜀𝑚𝑡
2  (from correlated stationary processes) 
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𝜉𝑚𝑡,𝑚𝑡 = ∑ 𝜑𝑚𝑠

𝑚−1

𝑠=1

𝜉𝑚𝑠 +∑∑𝜑𝑘.𝑚𝑗

𝑛

𝑗=1

𝜉𝑚𝑡,𝑗𝑡(𝑘)

𝑝

𝑘=1

+ 𝜎𝜖𝑚𝑡
2 ,                𝑠 ≠ 𝑚                                                          (41) 

Equations (37), (39) and (41) are upper diagonal variances of 𝑍1𝑡 , 𝑍2𝑡  𝑎𝑛𝑑 𝑍𝑚𝑡  𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
 

ii. Lower Diagonal of MARDL Models and Their Variances 

This section considers the conditions for identification of the lower diagonal VAR models from the general form. 

From Equation (28), the following set of models is obtained 

 

 𝑍𝑖𝑡 =

{
 
 

 
 

𝛿1 + ∅1𝑠𝑍𝑠𝑡   +  𝜑𝑘.1𝑗𝑍𝑗𝑡−𝑘 + 𝜀1𝑡, 𝑖 = 1; 𝑗 = 1; 𝑘 = 1,… , 𝑝; (𝑠 ≠ 1)

𝛿2 + ∅2𝑠𝑍𝑠𝑡   +  𝜑𝑘.2𝑗𝑍𝑗𝑡−𝑘 + 𝜀2𝑡, 𝑖 = 2; 𝑗 = 1, 2; 𝑘 = 1,… , 𝑝; (𝑠 ≠ 2)

𝛿3 + ∅3𝑠𝑍𝑠𝑡   +  𝜑𝑘.3𝑗𝑍𝑗𝑡−𝑘 + 𝜀3𝑡 , 𝑖 = 3; 𝑗 = 1, 2, 3; 𝑘 = 1,… , 𝑝; (𝑠 ≠ 3)

⋮ 
𝛿𝑚 + ∅𝑚𝑠𝑍𝑠𝑡   + 𝜑𝑘.𝑚𝑗𝑍𝑗𝑡−𝑘 + 𝜀𝑚𝑡 ,   𝑖 = 𝑚;  𝑗 = 1, 2, 3, … , 𝑛;      𝑘 = 1,… , 𝑝; (𝑠 ≠ 𝑚)

                                 (42)                   

 
Equation (42) defines a set of Lower Diagonal Multivariate Autoregressive Distributed Lag Models (LDMARDL).  

 

Proof: 

Given Equation (28) as 

𝑍𝑖𝑡 = 𝛿𝑖 +∑∅𝑖𝑠𝑍𝑠𝑡

𝑚

𝑠=1

+∑∑∅𝑘.𝑖𝑗

𝑛

𝑗=1

𝑍𝑗𝑡−𝑘

𝑝

𝑘=1

+ 𝜀𝑗𝑡 , 𝑖 = 1,… ,𝑚 (𝑖 ≠ 𝑠)                  

Case 1: 𝑖𝑓 𝑖 = 1; 𝑠 = 1,… ,𝑚 (𝑠 ≠ 1); 𝑗 = 1; 𝑘 = 1,… , 𝑝  

𝑍1𝑡 = 𝛿1 + ∅12𝑍2𝑡 + ∅13𝑍3𝑡+ . . . +∅1𝑛 𝑍𝑛𝑡 + ∅1.11𝑍1𝑡−1 + ∅2.11𝑍1𝑡−2 + …+ ∅𝑝.11𝑍1𝑡−𝑝 

                              +𝜀1𝑡                                                                                                                                                            (43) 
 

𝑍1𝑡 = 𝛿1 +∑∅1𝑠

𝑚

𝑠=1

𝑍𝑠𝑡 +∑∅𝑘.11

𝑝

𝑘=1

𝑍1𝑡−𝑘 + 𝜀1𝑡                                                                                                                      (44) 

 

Case 2: 𝑖𝑓 𝑖 = 2; 𝑠 = 1,… ,𝑚 (𝑠 ≠ 2);  𝑗 = 1, 2; 𝑘 = 1,… , 𝑝  

𝑍2𝑡 =   𝛿2 + ∅21𝑍1𝑡 + ∅23𝑍3𝑡+ . . . +∅2𝑛𝑍𝑛𝑡 + ∅1.21𝑍1𝑡−1 + ∅1.22𝑍2𝑡−1 +  ∅2.21𝑍1𝑡−2 + ∅2.22𝑍2𝑡−2 +⋯
+ ∅𝑝.21𝑍1𝑡−𝑝 + ∅𝑝.22𝑍2𝑡−𝑝 + 𝜀2𝑡                                                                                                         (45) 

 

 𝑍2𝑡 = 𝛿2 +∑∅2𝑠𝑍𝑠𝑡

𝑚

𝑠=1

+∑∑∅𝑘.2𝑗

2

𝑗=1

𝑍𝑗𝑡−𝑘

𝑝

𝑘=1

+ 𝜀2𝑡                                                                                                                  (46) 

 

Case 3: 𝑖𝑓 𝑖 = 𝑚; 𝑠 = 1,… ,𝑚 − 1(𝑠 ≠ 𝑚);  𝑗 = 1, 2, … , 𝑛; 𝑘 = 1,… , 𝑝  

𝑍𝑚𝑡 =    𝛿𝑚 + ∅𝑚1𝑍1𝑡 + ∅𝑚2𝑍2𝑡 + ∅𝑚3𝑍3𝑡+ . . . +∅𝑚 (𝑛−1)𝑍(𝑛−1)𝑡 + ∅1.𝑚1𝑍1𝑡−1 + ∅1.𝑚2𝑍2𝑡−1 +⋯+ ∅1.𝑚𝑛𝑍𝑛𝑡−1  

+ ∅2.𝑚1𝑍1𝑡−2 + ∅2.𝑚2𝑍2𝑡−2 +⋯+ ∅2.𝑚𝑛𝑍𝑛𝑡−2 +⋯+ ∅𝑝.𝑚1𝑍1𝑡−𝑝 + ∅𝑝.𝑚2𝑌2𝑡−𝑝 +⋯+ ∅𝑝.𝑚𝑛𝑍𝑛𝑡−𝑝   

+  𝜀𝑚𝑡                                                                                                                                                                           (47) 
 

𝑍𝑚𝑡 = 𝛿𝑚 +∑∅𝑚𝑠𝑍𝑠𝑡

𝑚

𝑠=1

+∑∑∅𝑘.𝑚𝑗

𝑛

𝑗=1

𝑍𝑗𝑡−𝑘

𝑝

𝑘=1

+ 𝜀𝑚𝑡                                                                                                            (48) 

Equations (44), (46) and (48) are a set of Lower Diagonal MARDL Models, and these complete the proof. 
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Variances of Lower Diagonal Multivariate Autoregressive Distributed Lag (MARDL) Models 

Variances of 𝒁𝒊𝒕: 
Let 𝑍𝑖𝑡 in Equation (32) be a stationary process that is distributed about the origin such that 𝐸(𝑍𝑖𝑡) = 0, => 𝛿1 = 𝛿2 = ⋯ =
𝛿𝑚 = 0. 

Case1: 𝑓𝑜𝑟 𝑖 = 1,  multiply Equation (43) by 𝑍1𝑡 and take the expectations. 

𝐸(𝑍1𝑡𝑍1𝑡) = 𝐸[𝑍1𝑡( ∅12𝑍2𝑡 + ∅13𝑍3𝑡+ . . . +∅1𝑛𝑍𝑛𝑡 + ∅1.11𝑍1𝑡−1 + ∅2.11𝑍1𝑡−2 + …+ ∅𝑝.11𝑍1𝑡−𝑝 + 𝜀1𝑡)]  

                                                                                                                                                
Let 𝜉1𝑡,1𝑡 be Variance of 𝑌1𝑡.  

𝜉1𝑡,1𝑡 = ∅12𝜉1𝑡,2𝑡 + ∅13𝜉1𝑡,3𝑡+ …+  ∅1𝑛𝜉1𝑡,𝑛𝑡 + ∅1.11𝜉1𝑡,1𝑡(1) + ∅2.11𝜉1𝑡,1𝑡(2) +⋯+ ∅𝑝.11𝜉1𝑡,1𝑡(𝑝) + 𝜎𝜀1𝑡
2   (49) 

 

where, 𝐸(𝑍1𝑡𝜀1𝑡) = 𝜎𝜀1𝑡
2  (from correlated stationary process) 

 

𝜉1𝑡,1𝑡 =∑𝜑1𝑠

𝑚

𝑠=1

𝜉1𝑠 +∑𝜑𝑘.11𝜉1𝑡,1𝑡(𝑘) + 𝜎𝜀1𝑡
2                                                                                                                    (50)

𝑝

𝑘=1

 

 

Case 2: 𝑓𝑜𝑟 𝑖 = 2; 𝑗 = 1, 2; 𝑘 = 1,… , 𝑝 𝑎𝑛𝑑 𝛿2 = 0,  multiply Equation (45) by 𝑍2𝑡 and take the expectations. 

𝐸(𝑍2𝑡𝑍2𝑡) =    𝐸[𝑍2𝑡(∅21𝑍1𝑡 + ∅23𝑍3𝑡+ . . . +∅2𝑛𝑍𝑛𝑡 + ∅1.21𝑍1𝑡−1 + ∅1.22𝑍2𝑡−1 +  ∅2.21𝑍1𝑡−2 + ∅2.22𝑍2𝑡−2 +⋯

+ ∅𝑝.21𝑍1𝑡−𝑝 + ∅𝑝.22𝑍2𝑡−𝑝 + 𝜀2𝑡)]                                                                                                                   

  

Let 𝜉2𝑡,2𝑡 𝑏𝑒 Variance of 𝑌2𝑡.  
 

𝜉2𝑡,2𝑡 = 𝜑21𝜉2𝑡,1𝑡 + 𝜑23𝜉2𝑡,3𝑡 +⋯+𝝋𝟐𝒏𝜉2𝑡,𝑛𝑡 +𝝋𝟏.𝟐𝟏𝜉2𝑡,1𝑡(1) + 𝜑1.22𝜉2𝑡,2𝑡(1) + 𝜑2.21𝜉2𝑡,1𝑡(2) 

                 +𝜑2.22𝜉2𝑡,2𝑡(2) +⋯+ 𝜑𝑝.21𝜉2𝑡,1𝑡(𝑝) + 𝜑𝑝.22𝜉2𝑡,2𝑡(𝑝) + 𝜎𝜀2𝑡
2                                                                       (51) 

 

where, 𝐸(𝑍2𝑡𝜀2𝑡) = 𝜎𝜀2𝑡
2  (from correlated stationary processes) 

 

𝜉2𝑡,2𝑡 =∑𝜑2𝑠

𝑚

𝑠=1

𝜉2𝑠 +∑∑∅𝑘.2𝑗𝜉2𝑡,𝑗𝑡(𝑖)

2

𝑗=1

+ 𝜎𝜀2𝑡
2                                                                                                             (52)

𝑝

𝑘=1

 

 

Case 3: 𝑖𝑓 𝑖 = 𝑚; 𝑗 = 1, 2, … , 𝑛; 𝑘 = 1,… , 𝑝 and 𝛿𝑚 = 0, multiply Equation (47) by 𝑍𝑚𝑡 and take the expectations. 

 

𝐸(𝑍𝑚𝑡𝑍𝑚𝑡) =    [𝑍𝑚𝑡(∅𝑚1𝑍1𝑡 + ∅𝑚2𝑍2𝑡 + ∅𝑚3𝑍3𝑡+ . . . +∅𝑚 (𝑛−1)𝑍(𝑛−1)𝑡 + ∅1.𝑚1𝑍1𝑡−1 + ∅1.𝑚2𝑍2𝑡−1 +⋯

+ ∅1.𝑚𝑛𝑍𝑛𝑡−1  + ∅2.𝑚1𝑍1𝑡−2 + ∅2.𝑚2𝑍2𝑡−2 +⋯+ ∅2.𝑚𝑛𝑍𝑛𝑡−2 +⋯+ ∅𝑝.𝑚1𝑍1𝑡−𝑝 + ∅𝑝.𝑚2𝑌2𝑡−𝑝 +⋯

+ ∅𝑝.𝑚𝑛𝑍𝑛𝑡−𝑝   +  𝜀𝑚𝑡)]                                                                                                                     
 

𝐸(𝑍𝑚𝑡𝑍𝑚𝑡) = 𝐸(𝑍𝑚𝑡
2 ) = 𝜉𝑚𝑡,𝑚𝑡 (Variance of 𝑍𝑚𝑡) 

 

𝜉𝑚𝑡,𝑚𝑡 = ∅𝑚1𝜉𝑚𝑡,1𝑡 + ∅𝑚2𝜉𝑚𝑡,2𝑡+∅𝑚3𝜉𝑚𝑡,3𝑡 +⋯+ ∅𝑚(𝑛−1)𝜉𝑚𝑡,𝑛𝑡(1) +  ∅1.𝑚1𝜉𝑚𝑡,1𝑡(1) + ∅1.𝑚2𝜉𝑚𝑡,2𝑡(1) +⋯

+ ∅1.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(1) + ∅2.𝑚1𝜉𝑚𝑡,1𝑡(2) + ∅2.𝑚2𝜉𝑚𝑡,2𝑡(2) +⋯+ ∅2.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(2) +⋯+∅𝑝.𝑚1𝜉𝑚𝑡,1𝑡(𝑝)
+ ∅𝑝.𝑚2𝜉𝑚𝑡,2𝑡(𝑝) +⋯+ ∅𝑝.𝑚𝑛𝜉𝑚𝑡,𝑛𝑡(𝑝) + 𝜎𝜀𝑚𝑡

2                                                                                   (53) 

 

where, 𝐸(𝑍𝑚𝑡𝜀𝑚𝑡) = 𝜎𝜀𝑚𝑡
2  (correlated stationary process) 

 

        𝜉𝑚𝑡,𝑚𝑡 =∑𝜑𝑚𝑠

𝑚

𝑠=1

𝜉𝑚𝑠 +∑∑𝜑𝑖.𝑚𝑘𝜉𝑚𝑡,𝑘𝑡(𝑖)

𝑛

𝑘=1

𝑝

𝑗=1

+ 𝜎𝜀𝑚𝑡
2                                                                                                       (54)   
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Equations (50), (52) and (54) are lower diagonal variances of 𝑍1𝑡 , 𝑍2𝑡  𝑎𝑛𝑑 𝑍𝑚𝑡  𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
 

3. Empirical Results 

This section considers results obtained from the diagonal VAR and MARDL models. These include variances of the 

processes and error variances. To validate the models and their variance properties, data on Nigeria Gross Domestic 

Product, Crude Oil Petroleum, Agricultural production and Telecommunication are obtained for the analysis and 

estimation of model parameters. The source of data is the CBN Statistical Bulletin with the range from 1988- 2020. The 

results are presented in Tables below. 

 

Table1: Variances of the Processes from the two Upper and Lower Diagonal Models 

VARIABLES UDVAR UDMARDL LDVAR LDMARDL 

GDP 0.0002 0.0003 0.0003 0.0034 

C/PETROLEUM 0.0003 0.0027 0.0003 0.0011 

AGRIC 0.0009 0.0050 0.0009 0.0009 

TELECOM 0.0003 0.0033 0.0014 0.0035 

 

Table2: Variances of the Errors from the two Upper and Lower Diagonal Models 

VARIABLES UDVAR UDMARDL LDVAR LDMARDL 

GDP 0.0002 0.0003 0.0003 0.0001 

C/PETROLEUM 0.0001 0.0006 0.0002 0.0004 

AGRIC 0.0006 0.0003 0.0008 0.0003 

TELECOM 0.0023 0.0031 0.0020 0.0015 

 

Discussion and Conclusion 

The goal of this work was to identify diagonal vector autoregressive and multivariate autoregressive distributed lag 

models from generalised models with parameter constraints to the upper and lower diagonal elements of the coefficient 

matrices. The parameter restriction is required for parameter reduction in accordance with the principle of parsimony, as 

well as to avoid the appearance of multicollinearity in a multiple relationship between the response and the predictor lag 

variables. The prerequisites for identification of the diagonal VAR and MARDL models have been identified in this work, 

and the models' validity has been demonstrated. To compare the performances of the new classes of multivariate lag 

models, data from certain macroeconomic variables such as Nigeria Gross Domestic Product (GDP), Crude Oil Petroleum 

(C/PET), Agriculture (AGRIC), and Telecommunication (TELECOM) are used after the first order difference of the 

logarithm of the series to achieve stationarity. Using the model parameters, the models were estimated, and the variances 

of the processes and errors were derived. According to the findings as shown in Tables “1” and “2”, the two models have 

about the same comparative advantage. As a result, the two models complement each other in the modelling of multivariate 

lag variables.  
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