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Abstract – In this work, we build on the family of Integral Probability Metrics and design a new distance metric between probability 

distributions that belong to this family. The new metric is termed Lipschitz Variational Total Variation Distance and is a relaxation of 

the integral probability metric representation of the well-known total variation distance. We propose simple procedures to estimate this 

distance metric and demonstrate its convergence. Based on the Lipschitz smoothness of the proposed metric family, the proposed metrics, 

hence its empirical estimate, can provide meaningful and tight lower bounds for the total variation distance between two probability 

distributions. Finally, we extend our results to general measures and provide an application of the proposed estimators to bounding the 

Neyman-Pearson region. 
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1. INTRODUCTION 

      Given samples from two unknown probability measures, 𝑃 and 𝑄, it is often of interest to estimate the distance (or 

divergence) between them. Two well-known families of such distances are the integral probability metrics (IPM) and the f-

divergences. Both contain many well-known probability distances and divergences, among which the total variation distance 

(TVD) is the only intersection of the two families. Since it is well known from previous works (see for example, [1], [2]) 

that TVD cannot be estimated by simple procedures that work well on other instances from either family of probability 

distances (divergences), a variational approach is needed to bound TVD by some other distances and estimate the chosen 

bounding distance metric instead. To this end, we consider the family of IPMs and design a new metric in this family that 

closely approximates TVD but by relaxing the constraint on the family of functions, we obtain simple and provably 

convergent estimators based on empirical samples. There is a large literature on variational approximations and estimations 

for general f-divergences (see for example, [3], [4]) and inequalities between f-divergences and integral probability metrics 

(see for example, [5], [6]), although we discuss the IPM point of view only in this work. 

      We begin by considering the family of IPMs, which for two probability distributions 𝑃, 𝑄 defined on the metric space 
(𝒮, 𝜌), can be defined as, 

                                                                       𝛾ℱ(𝑃, 𝑄) = sup
𝑓∈ℱ

|∫ 𝑓
𝒮

𝑑𝑃 − ∫ 𝑓
𝒮

𝑑𝑄|                                                                 (1) 

where ℱ is a class of real-valued bounded measurable functions on 𝒮, see [2], [7], [8]. Some classic distance metrics can be 

recovered under various choices of the class of functions, in particular: 

(a) When ℱ𝑊 = {𝑓: ||𝑓||𝐿 ≤ 1}, 𝛾ℱ𝑊
(𝑃, 𝑄) = 𝑊1(𝑃, 𝑄) is the Wasserstein-1 distance, which is also known by its dual as 

the Kantorovich metric. Here ||𝑓||𝐿 is the Lipschitz norm defined as, 

                                                                   ||𝑓||𝐿 = sup{
𝑓(𝑥)−𝑓(𝑦)

𝜌(𝑥,𝑦)
: 𝑥, 𝑦 ∈ 𝒮, 𝑥 ≠ 𝑦}                                                             (2) 

(b) When ℱ𝛽 = {𝑓: ||𝑓||𝐵𝐿 ≤ 1}, 𝛾ℱ𝛽
(𝑃, 𝑄) = 𝛽(𝑃, 𝑄) is the Dudley metric, or the dual-bounded Lipschitz distance, where 

||𝑓||𝐵𝐿 = ||𝑓||∞ + ||𝑓||𝐿 with the maximal norm defined as, 

                                                                             ||𝑓||∞ = sup{|𝑓(𝑥)|: 𝑥 ∈ 𝒮}                                                                           (3) 

Dudley metric [9] metrizes weak convergence. 

(c) When ℱ𝑇𝑉𝐷 = {𝑓: ||𝑓||∞ ≤ 1}, 𝛾ℱ𝑇𝑉𝐷
(𝑃, 𝑄) = 𝑇𝑉𝐷(𝑃, 𝑄) is the total variation distance. The optimal 𝑓∗ always attain 

boundary values of {1, −1} and the TVD can be equivalently written as, 
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                                                                      𝑇𝑉𝐷(𝑃, 𝑄) = ∫ |𝑝(𝑥) − 𝑞(𝑥)|
𝑥∈𝒮

𝑑𝑥                                                                     (4) 

where 𝑝, 𝑞 are probability density functions of 𝑃, 𝑄 respectively. 

       Next, we develop a new distance metric within the IPM family, called Lipschitz Variational TVD (LV-TVD), and discuss 
its properties. We then discuss estimators for the proposed distance metric. 

2. LIPSCHITZ VARIATIONAL TOTAL VARIATION DISTANCE 

      Consider the following function class ℱ𝐿𝑉𝐷
𝑙 = {𝑓: ||𝑓||∞ ≤ 1, ||𝑓||𝐿 ≤ 𝑙}. Then the resulting IPM is called the Lipschitz 

variational Total Variation Distance (LV-TVD), which is, 

                                                                    𝛾𝐿𝑉𝐷
𝑙 (𝑃, 𝑄) = sup

𝑓∈ℱ𝐿𝑉𝐷
𝑙

|∫ 𝑓
𝒮

𝑑𝑃 − ∫ 𝑓
𝒮

𝑑𝑄|                                                             (5) 

This represents a one-parameter family of IPMs where 𝑙 > 0  is a Lipschitz smoothness parameter that controls the 

Lipschitzness of the chosen function class, which is also constrained to be maximally bounded by 1. We obtain some direct 

connections to well-known distances in the following theorem and lemmas. 

Theorem 1.  For any probability distribution 𝑃, 𝑄 defined on metric space (𝒮, 𝜌): 

(1) ∀𝑙 > 0, 𝛾𝐿𝑉𝐷
𝑙 (𝑃, 𝑄) ≤ 𝑇𝑉𝐷(𝑃, 𝑄). 

(2) ∀𝑙1 ≥ 𝑙2 > 0, 𝛾𝐿𝑉𝐷
𝑙2 (𝑃, 𝑄) ≤ 𝛾𝐿𝑉𝐷

𝑙1 (𝑃, 𝑄), and lim𝑙→∞𝛾𝐿𝑉𝐷
𝑙 (𝑃, 𝑄) = 𝑇𝑉𝐷(𝑃, 𝑄). 

(3) When 𝑙 = 1, 𝛽(𝑃, 𝑄) ≤ 𝛾𝐿𝑉𝐷
1 (𝑃, 𝑄) ≤ 𝑊1(𝑃, 𝑄). 

Lemma 2.  𝛾𝐿𝑉𝐷
𝑙  is a metric on the space of probability distributions 𝒫(𝒮), ∀𝑙 > 0. 

Lemma 3.  {𝛾𝐿𝑉𝐷
𝑙 }𝑙>0 metrizes weak convergence topology in the sense that ∀𝑙 > 0 and ∀𝑃, 𝑄 on (𝒮, 𝜌),                                                                    

                                                              min(1, 𝑙)𝛽(𝑃, 𝑄) ≤ 𝛾𝐿𝑉𝐷
𝑙 (𝑃, 𝑄) ≤ (1 + 𝑙)𝛽(𝑃, 𝑄)                                                  (6) 

Lemma 4.  For any probability distributions 𝑃, 𝑄 defined on metric space (𝒮, 𝜌) and ∀𝑐, 𝑙 > 0, 

                                                          sup
𝑓∈{𝑓:||𝑓||𝐿≤𝑙,||𝑓||∞≤𝑐}

|∫ 𝑓
𝒮

𝑑𝑃 − ∫ 𝑓
𝒮

𝑑𝑄| = 𝑐𝛾𝐿𝑉𝐷
𝑙/𝑐 (𝑃, 𝑄)                                                (7) 

3. EMPIRICAL ESTIMATOR FOR LIPSCHITZ VARIATIONAL TVD 

      Similar to [2], we consider an empirical estimator for 𝛾𝐿𝑉𝐷
𝑙 (𝑃, 𝑄) which estimates 𝛾𝐿𝑉𝐷

𝑙 (𝑃𝑚, 𝑄𝑛) based on empirical 

distributions 𝑃𝑚, 𝑄𝑛 of 𝑃, 𝑄 where the empirical distributions are defined over finite samples {𝑋𝑖
(1)

}𝑖=1
𝑚 ∼ 𝑃 and {𝑋𝑗

(2)
}𝑗=1

𝑛 ∼

𝑄 with sample sizes 𝑚, 𝑛 which may be potentially different. Let’s make the following definitions similar to [2]. Let {𝑋𝑖}𝑖=1
𝑁  

where 𝑁 = 𝑚 + 𝑛 , 𝑋𝑖 = 𝑋𝑖
(1)

, ∀𝑖 = 1, … , 𝑚  and 𝑋𝑖 = 𝑋𝑖
(2)

, ∀𝑖 = 𝑚 + 1, … , 𝑁 . Define {𝑌̃𝑖}𝑖=1
𝑁  such that 𝑌̃𝑖 =

1

𝑚
, ∀𝑖 =

1, … , 𝑚 and 𝑌̃𝑖 = −
1

𝑛
, ∀𝑖 = 𝑚 + 1, … , 𝑁. The Lipschitz variational TVD for the empirical distributions 𝑃𝑚, 𝑄𝑛 is defined 

through the following maximization problem, for a chosen 𝑙 > 0: 

                                                   𝛾𝐿𝑉𝐷
𝑙 (𝑃𝑚, 𝑄𝑛) = sup

𝑓∈ℱ𝐿𝑉𝐷
𝑙

|∑ 𝑌̃𝑖
𝑁
𝑖=1 𝑓(𝑋𝑖)| = sup

𝑓∈ℱ𝐿𝑉𝐷
𝑙

∑ 𝑌̃𝑖
𝑁
𝑖=1 𝑓(𝑋𝑖)                                          (8) 

where the second equality is true because the family ℱ𝐿𝑉𝐷
𝑙  is closed under negation. The empirical LV-TVD can be obtained 

from the optimal objective value of the following linear programming (LP) problem, 

                                               

𝛾𝐿𝑉𝐷
𝑙 (𝑃𝑚, 𝑄𝑛) = max

𝑎1,…,𝑎𝑁

∑ 𝑌̃𝑖
𝑁
𝑖=1 𝑎𝑖

𝑠. 𝑡. −𝑙𝜌(𝑋𝑖 , 𝑋𝑗) ≤ 𝑎𝑖 − 𝑎𝑗 ≤ 𝑙𝜌(𝑋𝑖 , 𝑋𝑗), ∀𝑖, 𝑗 = 1, … , 𝑁

−1 ≤ 𝑎𝑖 ≤ 1, ∀𝑖 = 1, … , 𝑁

                                     (9) 
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The two constraints in (9) translate the Lipschitz and maximal bounds on functions in the class ℱ𝐿𝑉𝐷
𝑙 . The LP in (9) can have 

many redundant constraints, hence we use a reduction of these constraints that makes the problem much faster to solve, 

especially in 1-D data setting where data points are ordered (details omitted). Let the optimal solution of (9) be denoted by 

{𝑎𝑖
∗}𝑖=1

𝑁 . By Lipschitz extension theorem and relevant results for Wasserstein-1 distance and Dudley metric (see [2], [9], 

[10]), the optimal function 𝑓∗ in (9) is an extension of the optimal solution of the LP: 𝑓∗(𝑋𝑖) = 𝑎𝑖
∗, ∀𝑖 = 1, … , 𝑁. The 

resulting solution of the LP gives the LV-TVD distance of the empirical distributions as, 

                                                                           𝛾𝐿𝑉𝐷
𝑙 (𝑃𝑚, 𝑄𝑛) = ∑ 𝑌̃𝑖

𝑁
𝑖=1 𝑎𝑖

∗                                                                         (10) 

Theorem 5.  For any given 𝑙 > 0 and samples from probability distributions 𝑃, 𝑄, in the limit 𝑚, 𝑛 → ∞, the empirical LV-

TVD distance estimator 𝛾𝐿𝑉𝐷
𝑙 (𝑃𝑚, 𝑄𝑛) converges almost surely to the true LV-TVD distance 𝛾𝐿𝑉𝐷

𝑙 (𝑃, 𝑄) in the sense that: 

lim𝑚,𝑛→∞|𝛾𝐿𝑉𝐷
𝑙 (𝑃𝑚, 𝑄𝑛) − 𝛾𝐿𝑉𝐷

𝑙 (𝑃, 𝑄)| = 0 a.s. 

      Based on the above theorem of convergence, we can get a consistent estimator of the desired distance metric 𝛾𝐿𝑉𝐷
𝑙 (𝑃, 𝑄) 

for any two probability distributions 𝑃, 𝑄 based on two sample estimates 𝛾𝐿𝑉𝐷
𝑙 (𝑃𝑚, 𝑄𝑛). The properties in Theorem 1 make 

it obvious that the proposed estimators 𝛾𝐿𝑉𝐷
𝑙 (𝑃𝑚, 𝑄𝑛) can serve as tight estimators of lower bounds for the TVD, given that 

sufficient samples are available and the parameter 𝑙 is chosen to be large enough. [2] discussed why an empirical TVD 

estimator of the form in (8) is not consistent due to the function class of TVD not being Lipschitz continuous. The LV-TVD 

function class serves as a close relaxation of the TVD function class while being Lipschitz and bounded, hence guaranteeing 

consistency of the estimator in (8), (9). We point out that the estimator in (8), (9) is translation invariant, which is also a 

property of the LV-TVD distance metric 𝛾𝐿𝑉𝐷
𝑙  itself. 

4. NUMERICAL EXPERIMENTS 

The convergence behavior of the proposed estimators is demonstrated via the following experiments, see Figure 1. 

 

Fig. 1: Empirical LV-TVD Estimator for P = N(0, 1), Q = N(0, 9), (a): 𝑙 = 2; (b): 𝑙 = 4 

      In all our experiments in this section, the ground-truth TVD values (computed via numerical integration), a naive TVD 

estimator based on estimating the mean and variance of each data sample first and plugging these estimates into the numeric 

integration procedure for TVD distance between Gaussians, and the LV-TVD estimator values are divided by a factor of 2 

to adhere to the conventional definition of TVD which can be shown to be bounded between 0 and 1. As the sample size 

𝑚 = 𝑛 = 10, 32, 100, 320, 1000 increases, our estimator asymptotically converges to a value close to the true TVD value, 

which is an upper bound for 𝛾𝐿𝑉𝐷
𝑙 (𝑃, 𝑄). Each choice of sample size is run for 20 iterations so as to obtain both a mean and 

a confidence interval of the estimator results which demonstrates the estimator convergence. In particular, we observe that 

the estimator results for larger 𝑙 are generally upper bounding those for smaller 𝑙 for the same setting. 

      Besides pairs of Gaussians, another simpler example we considered is when 𝑃 = 𝐸𝑥𝑝(𝜆) is an exponential distribution 

and 𝑄 = 𝑈(0,1) is a uniform distribution. Here 𝜆 > 0 is the rate parameter of an exponential distribution. 𝑇𝑉𝐷(𝑃, 𝑄) for 

this case has an analytic solution. Specifically, 𝑇𝑉𝐷(𝑃, 𝑄) = ∫ |𝑝(𝑥) − 𝑞(𝑥)|
𝑥

𝑑𝑥 can be explicitly computed as: 
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                                                               𝑇𝑉𝐷(𝑃, 𝑄) = 2 (1 −
1

𝜆
−

log𝜆

𝜆
+ 𝑒−𝜆) , 𝜆 ≥ 1                                                           (11) 

                                                                         𝑇𝑉𝐷(𝑃, 𝑄) = 2𝑒−𝜆, 0 < 𝜆 ≤ 1                                                                       (12) 

For 0 < 𝜆 < 1, we can exactly compute 𝛾𝐿𝑉𝐷
𝑙 (𝑃, 𝑄) through a maximization problem with respect to the location of the 

piecewise linear identifier function 𝑓. Take for example the case where 𝑙 = 2, the only point of intersection of the density 

functions p(x) = 𝜆𝑒−𝜆𝑥,q(x) = 1[0,1] is at 𝑥 = 1. The optimal identifier function will be a piecewise linear function 𝑓𝑧(𝑥) 

with some 𝑧 ∈ [0,1]  so that 𝑓𝑧(𝑥) = −1, −∞ < 𝑥 ≤ 𝑧 , 𝑓𝑧(𝑥) = −1 + 2(𝑥 − 𝑧), 𝑧 < 𝑥 < 1 + 𝑧 , and 𝑓𝑧(𝑥) = 1,1 + 𝑧 ≤

𝑥 < ∞. We can exactly integrate ∫ 𝑓𝑧𝑥
(𝑥)(𝑝(𝑥) − 𝑞(𝑥))𝑑𝑥 under the choice of identifier function parametrized by a single 

number 𝑧 ∈ [0,1] and the optimal 𝑧  results in the LV-TVD value as the optimal objective of the IPM’s maximization 

problem: 

                                                𝛾𝐿𝑉𝐷
𝑙=2 (𝑃, 𝑄) = max

𝑧∈[0,1]
{

2

𝜆
(1 − 𝑒−𝜆)𝑒−𝜆𝑧 − (𝑧 − 1)2}, ∀0 < 𝜆 ≤ 1                                            (13) 

For example, when 𝜆 = 0.5 < 1 and 𝑙 = 2, the optimal solution of the problem (13) is approximately 𝑧∗ ≈ 0.726357 and 

the optimal solution is approximately 𝛾𝐿𝑉𝐷
𝑙=2 (𝑃, 𝑄) ≈ 1.01969. The optimal identifier function is plotted in Figure 2(a). Notice 

that the TVD value for this pair of distributions can be explicitly computed via formula (12) as 𝑇𝑉𝐷(𝑃, 𝑄) = 2𝑒−0.5 ≈
1.21306. The intrinsic gap between 𝛾𝐿𝑉𝐷

𝑙=2  and 𝑇𝑉𝐷 for this pair of distributions is about 0.19337. For a fixed 𝑙 > 0, this gap 

is instance dependent. 

 

Fig. 2: Numerical Example for 𝑃 = 𝐸𝑥𝑝(0.5), 𝑄 = 𝑈(0,1), 𝑙 = 2, (a): Optimal Identifier Function; (b): Empirical LV-TVD 

Estimator 

      We performed the LV-TVD estimator with 𝑙 = 2 for data samples from 𝑃 = 𝐸𝑥𝑝(0.5) and 𝑄 = 𝑈(0,1), where sample 

size grows as 𝑚 = 𝑛 = 10, 32, 100, 320, 1000 and 20 iterations are performed for each setting, see Figure 2(b). In addition 

to the ground-truth TVD value, which is plotted in a solid black line, we add a dashed black line that indicates the ground-

truth LV-TVD value analytically computed, both divided by 2 by convention. Clearly, the LV-TVD estimator is converging 

asymptotically to the ground-truth LV-TVD value 𝛾𝐿𝑉𝐷
𝑙=2 (𝑃, 𝑄), which provides a lower bound of 𝑇𝑉𝐷(𝑃, 𝑄) for this choice 

of 𝑃, 𝑄. 

5. EXTENSION TO GENERAL MEASURES 
      Results in sections 2 and 3 can be readily extended to general measures 𝑃, 𝑄  which integrates to 0 < 𝑠, 𝑡 < ∞ 

respectively over the metric space (𝒮, 𝜌). Equation (5) still defines a distance metric for these two measures, and we can 

prove similar results to Theorem 1 on the space of general measures 𝑃, 𝑄. In particular, we remark the following relationship 

still holds: 

                             𝛾𝐿𝑉𝐷,𝑠,𝑡
𝑙 (𝑃, 𝑄) = sup

𝑓∈ℱ𝐿𝑉𝐷
𝑙

|∫ 𝑓
𝒮

𝑑𝑃 − ∫ 𝑓
𝒮

𝑑𝑄| ≤ sup
𝑓∈ℱ𝑇𝑉𝐷

|∫ 𝑓
𝒮

𝑑𝑃 − ∫ 𝑓
𝒮

𝑑𝑄| = 𝑇𝑉𝐷𝑠,𝑡(𝑃, 𝑄)                       (14) 
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where we have defined the generalized TVD distance as 𝑇𝑉𝐷𝑠,𝑡(𝑃, 𝑄). Similar to section 2, we can show that the proposed 

distance metric is indeed a metric on general measures 𝑃, 𝑄. 

      To estimate the quantity 𝑇𝑉𝐷𝑠,𝑡(𝑃, 𝑄) = sup𝑓∈ℱ𝑇𝑉𝐷
|∫ 𝑓

𝒮
𝑑𝑃 − ∫ 𝑓

𝒮
𝑑𝑄| we resolve to the same estimator of the form in 

Equation (8), where for two empirical measures 𝑃𝑚, 𝑄𝑛  that sums to 𝑠, 𝑡, we now define {𝑍̃𝑖}𝑖=1
𝑁  such that 𝑍̃𝑖 =

𝑠

𝑚
, ∀𝑖 =

1, … , 𝑚 and 𝑍̃𝑖 = −
𝑡

𝑛
, ∀𝑖 = 𝑚 + 1, … , 𝑁. Define, ∀𝑙 > 0: 

                                                 𝛾𝐿𝑉𝐷,𝑠,𝑡
𝑙 (𝑃𝑚, 𝑄𝑛) = sup

𝑓∈ℱ𝐿𝑉𝐷
𝑙

|∑ 𝑍̃𝑖
𝑁
𝑖=1 𝑓(𝑋𝑖)| = sup

𝑓∈ℱ𝐿𝑉𝐷
𝑙

∑ 𝑍̃𝑖
𝑁
𝑖=1 𝑓(𝑋𝑖)                                           (15) 

where the second equality is true because the family ℱ𝐿𝑉𝐷
𝑙  is closed under negation. The empirical LV-TVD can be obtained 

from the optimal objective value of a similar linear program as in (9), which we omit here. The empirical measures 𝑃𝑚, 𝑄𝑛 

converge almost surely in the weak sense to 𝑃, 𝑄, hence we arrive at the following theorem, which states the convergence of 

the proposed estimators. 

Theorem 6.  For any given 𝑙 > 0 and samples from general measures 𝑃, 𝑄 (that integrate to 𝑠, 𝑡 respectively), in the limit 

𝑚, 𝑛 → ∞, the empirical LV-TVD distance estimator 𝛾𝐿𝑉𝐷,𝑠,𝑡
𝑙 (𝑃𝑚, 𝑄𝑛) converges almost surely to 𝛾𝐿𝑉𝐷,𝑠,𝑡

𝑙 (𝑃, 𝑄) in the sense 

that: lim𝑚,𝑛→∞|𝛾𝐿𝑉𝐷,𝑠,𝑡
𝑙 (𝑃𝑚, 𝑄𝑛) − 𝛾𝐿𝑉𝐷,𝑠,𝑡

𝑙 (𝑃, 𝑄)| = 0 a.s. 

      Without loss of generality, let 𝑃, 𝑄 have densities 𝑠𝑝, 𝑡𝑞 respectively for some constants 0 < 𝑠, 𝑡 < ∞, where 𝑝, 𝑞 are 

probability densities that integrate to 1 over 𝑥 ∈ 𝒮. We arrive at the following inequality: 

                                𝛾𝐿𝑉𝐷,𝑠,𝑡
𝑙 (𝑃, 𝑄) ≤ 𝑇𝑉𝐷𝑠,𝑡(𝑃, 𝑄) = sup

𝑓∈ℱ𝐿𝑉𝐷
𝑙

|∫ 𝑓
𝒮

𝑑𝑃 − ∫ 𝑓
𝒮

𝑑𝑄| = ∫ |𝑠𝑝(𝑥) − 𝑡𝑞(𝑥)|
𝑥∈𝒮

𝑑𝑥                        (16) 

Hence the proposed estimators in (15) will provide an approximate lower bound of the quantity (which we termed generalized 

TVD) 𝑇𝑉𝐷𝑠,𝑡(𝑃, 𝑄) = ∫ |𝑠𝑝(𝑥) − 𝑡𝑞(𝑥)|
𝑥∈𝒮

𝑑𝑥 for any two probability densities 𝑝, 𝑞, given only samples from them that 

have large enough size. As the choice of parameter 𝑙 increases and data size increases, the approximation tends to be more 

accurate. Similar to the case for standard TVD estimators, these generalized estimators are also translation invariant. 

 

Fig. 3: Empirical LV-TVD Estimator for General Measures, 𝑠 = 0.75, 𝑡 = 1.25, 𝑙 = 3 

      As a demonstration, consider 𝑃, 𝑄  which have densities 𝑠𝑝, 𝑡𝑞  respectively where 𝑝, 𝑞  are densities of two normal 

distributions 𝑁(0,4), 𝑁(1,1). In Figure 3, we choose 𝑠 = 0.75, 𝑡 = 1.25 and show the convergence of the proposed estimator 

𝛾𝐿𝑉𝐷,𝑠,𝑡
𝑙 (𝑃𝑚, 𝑄𝑛) for 𝑙 = 3 (same setting and convention as before). 
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6. APPLICATION TO BOUNDING THE NEYMAN-PEARSON REGION 
      We propose to use the estimators in (15) to approximate the Neyman-Pearson region. For two probability distributions 

with densities 𝑝, 𝑞, and for 𝑠, 𝑡 > 0 such that 𝑠 + 𝑡 = 2, the Neyman-Pearson region for type I (𝛼(𝐸)) and type II (𝛽(𝐸)) 

errors (for distribution by 𝑞) satisfy (17) for an optimal choice of event 𝐸⋆ (see [1]): 

                                        𝑠𝛼(𝐸⋆) + 𝑡𝛽(𝐸⋆) =
𝑡+𝑠

2
−

1

2
∫ |𝑠𝑝(𝑥) − 𝑡𝑞(𝑥)|

𝑥
𝑑𝑥 =

𝑡+𝑠

2
−

1

2
𝑇𝑉𝐷𝑠,𝑡(𝑃, 𝑄)                                 (17) 

and can hence be bounded by the following inequality: 

                                                           𝑠𝛼(𝐸⋆) + 𝑡𝛽(𝐸⋆) ⪅
𝑡+𝑠

2
−

1

2
𝛾𝐿𝑉𝐷,𝑠,𝑡

𝑙 (𝑃, 𝑄), ∀𝑙 > 0                                                     (18) 

      As a demonstration, we consider a case where 𝑝, 𝑞 are densities of two normal distributions 𝑁(0,4), 𝑁(1,1). In Figure 4 

we replicate similar experiments as shown in Figure 3 for some chosen pairs of 𝑠, 𝑡 values and plot the resulting generalized 

LV-TVD estimator mean value in red against the chosen 𝑠 values, where 𝑡 = 2 − 𝑠. (Here we consider sample size 𝑚 =
𝑛 = 1000 and Lipschitz parameter 𝑙 = 3. For each of the 20 iterations, the same sampled data is used by all choices of (𝑠, 𝑡) 

pairs, and the mean is taken over the 20 iterations for each choice of (𝑠, 𝑡). Estimated values and the ground-truth generalized 

TVD values in the figure are divided by a factor of 2 according to convention.) 

      For the endpoints 𝑠 = 2, 𝑡 = 0 and 𝑠 = 0, 𝑡 = 2, the empirical estimator 𝛾𝐿𝑉𝐷,𝑠,𝑡
𝑙 (𝑃𝑚, 𝑄𝑛) by default produces the exact 

generalized TVD value of 2, a result that is independent of the choice of measures 𝑃, 𝑄 and the choice of 𝑙. The ground-truth 

generalized TVD values 𝑇𝑉𝐷𝑠,𝑡(𝑃, 𝑄) = ∫ |𝑠𝑝(𝑥) − 𝑡𝑞(𝑥)|
𝑥∈𝒮

𝑑𝑥 are computed via numerical integration for each pair of 

𝑠, 𝑡 values and plotted in blue together with the mean estimated values in Figure 4. Following (18), the estimated values can 

be used to approximate the true Neyman-Pearson region with a sufficient sample size. Notice that the results in Figure 4 

demonstrate the estimated values are close enough to the true values of interest, and so is our approximation of 𝑠𝛼(𝐸⋆) +

𝑡𝛽(𝐸⋆) by 1 −
1

2
𝛾𝐿𝑉𝐷,𝑠,𝑡

𝑙 (𝑃𝑚, 𝑄𝑛), which is always bounded between 0 and 1, for 𝑠 + 𝑡 = 2 and 𝑠, 𝑡 > 0. The Neyman-

Pearson region’s lower boundary can be directly computed from the estimated values by finding the convex hull above the 

supporting hyperplanes 𝑠𝛼 + 𝑡𝛽 = 1 −
1

2
𝛾𝐿𝑉𝐷,𝑠,𝑡

𝑙 (𝑃𝑚, 𝑄𝑛). 

 

Fig. 4: Empirical LV-TVD Estimator (𝑙 = 3) for General Measures and Varying 𝑠 + 𝑡 = 2 

7. CONCLUSIONS 
      In this paper, we proposed LV-TVD, a variational lower bound for total variation distance from the perspective of an 

integral probability metric family. We discussed properties of the proposed distance metrics as relating to well-known IPMs 
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such as total variation distance, Wasserstein distance, and Dudley metric. We developed a consistent estimator for this 

proposed distance metric on the space of probability distributions and generalized it to the space of general measures. Our 

numerical results indicate that the proposed family of estimators provides good approximations to the true total variation 

distance between the underlying distributions of two given finite data samples. As an application, the extension of our 

estimation procedure to general measures can provide effective bounds to the Neyman-Pearson region. As an extension, we 

propose to consider in future works data-adaptive choices of the Lipschitz parameter 𝑙 to enhance the performance of the 

proposed estimators and provide a tighter bound for TVD. 

      Our proposed estimators see applications in settings where we need to quantify the difference between two data samples, 

and it naturally fits the goal of quantifying distribution shifts between different time periods where the samples are taken. 

Hence it can be applied to many real-world problems where stability of the distribution over time needs to be quantified. For 

example, consider Explainability Index (EI) introduced in [11] which evaluates asset performance over a historic period 

balancing different categories of performance measures according to specified preferences, and can be applied to security 

selection. In the computation of EI, the distribution shift score is an important input risk component and can be computed by 

either approximating the empirical distributions with known densities or alternatively using our empirical estimators to 

directly estimate the total variation distances between data samples. 
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