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Abstract - The problem of classifying observations into classes in the presence of contamination in high dimensions is addressed by 
combining variable selection and mixtures of contaminated normal distributions. Model-based (contaminated) discrimination is wrapped 
in a forward head-long variable search algorithm to identify and select separating variables. A simulation study carried out suggests that 
using only the selected variables set produces better classification performance than using only the true separating variables or all 
variables for balanced and unbalanced classes. This effect is more evident with data sets in high dimensions.  
 
Keywords: Mixture of contaminated normals, variable selection, classification problems in high-dimensional space, 
supervised learning, accuracy. 
 
 
1. Introduction 

Mixture models have often been used in classification problems of all types [1]. These models represent the data with a 
finite mixture of distributions, each one corresponding to a class. The number of classes is assumed to be known, as well as 
the absence of contaminated samples. However, the assumption of only non-contaminated samples may be unrealistic in 
practice. 

The presence of contaminated samples can have a negative impact on the accuracy of classification models since 
contamination in the training data affects the estimation of the parameters of the model [2][3]. McNicholas (2017) introduced 
a mixture of two normal distributions where an additional component with two parameters is used to model contamination 
for continuous data [4]. One of the extra parameters models the percentage of non-contaminated samples in the group and 
the other models an inflation variance factor related to contamination in each class. Unfortunately, under this modeling 
framework, it can be difficult if not impossible to deal with data sets in high-dimensional space. 

 Bouveyron (2013) states that model-based methods show disappointing behavior in high-dimensional spaces due to 
over-parametrization [5]. Moreover, there are several applications such as analytical spectroscopy, mass spectroscopy, or 
genomics where the number of available observations can be small compared with the number of variables, making parameter 
estimation even more difficult. Nevertheless, it is often possible to reduce the dimension of the original space due to the fact 
that the dimension of observed data is usually higher than the intrinsic dimension. In other words, a small number of variables 
contain the relevant information of the observations and the remainder contain irrelevant information. 

Recent developments in model-based classification such as regularization-based techniques, parsimonious modeling, 
subspace classification methods, and classification methods based on variable selection enable efficient classification in high 
dimensional spaces. The advantage of the variable selection approach is that it can help with interpretability and it produces 
a simpler model. A simple model requires fewer parameters and because of this, it can make it possible to apply it in cases 
where it would not be possible using all the variables. 

In this paper, we wrap a mixture of contaminated normal models in a forward head-long variable search algorithm [6] 
to enable classification in the presence of contamination in high dimensional spaces. This is based on combining the methods 
proposed by Punzo (2018) [7] and Dean (2006) [8] on mixtures of contaminated normal distributions and variable selection 
in model-based clustering of continuous variables.  
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In Section 2 we review some aspects of basic classification with and without contamination using a finite mixture 
of normal distributions. The model selection procedure is also described as well as the metric to assess models. 
Moreover, the forward head-long variable search algorithm is introduced and the steps to extend a mixture of 
contaminated normal distributions for classification problems in the presence of contamination to a high dimensional 
space. In Section 3 we describe our methodology to simulate different data sets taking into account different effects and 
evaluate our proposed approach. Finally, conclusions can be found in Section 4.  

 
2. Methods 

 
2.1. Classification 

Classification is the process of allocating group membership labels to unlabelled observations. The presence of prior 
knowledge of group membership for observations (i.e. labelled data) can be used in classification problems. Moreover, 
in the finite mixture model framework `model-based discriminant analysis’ can be used for supervised classification [1].    

group 
2.2. Finite Mixture Models 
A finite mixture model is a probabilistic model which represents the presence of G groups within an overall population X of 
size n where p variables are observed for each subject. Finite mixture models have been broadly used in clustering and 
classification problems. So, each unlabelled element 𝒙𝒙 of the population X is a random vector of dimension p coming from 
a parametric finite mixture distribution with density:  
 

𝑓𝑓(𝒙𝒙|𝝑𝝑) =  �𝜋𝜋𝑔𝑔𝑓𝑓𝑔𝑔(𝒙𝒙|𝜽𝜽𝒈𝒈)
𝐺𝐺

𝑔𝑔=1

 (1) 

  
where 𝝑𝝑 = (𝜋𝜋1, … ,𝜋𝜋𝐺𝐺 ,𝚯𝚯) is the vector of parameters for the mixture model, 𝜋𝜋𝑔𝑔 > 0, is the proportion of the 𝑔𝑔𝑡𝑡ℎ component, 
𝚯𝚯 = (𝜽𝜽𝟏𝟏, … ,𝜽𝜽𝑮𝑮) the vector of parameters of the component densities, ∑ 𝜋𝜋𝑔𝑔𝐺𝐺

𝑔𝑔=1 = 1, and  𝑓𝑓𝑥𝑥�𝒙𝒙,𝜽𝜽𝒈𝒈� the density function of 
the 𝑔𝑔𝑡𝑡ℎ component. 
 
2.3. Mixture of multivariate Gaussian distributions 

The most popular finite mixture model used in classification problems is the Gaussian mixture model with 𝑔𝑔𝑡𝑡ℎ 
component density: 

 

𝑓𝑓𝑔𝑔�𝑥𝑥�𝜽𝜽𝒈𝒈� =
1

�(2𝜋𝜋)𝑝𝑝�𝚺𝚺𝒈𝒈�
℮
�−12�𝒙𝒙− 𝝁𝝁𝒈𝒈�

𝑇𝑇𝚺𝚺𝒈𝒈−𝟏𝟏�𝒙𝒙−𝝁𝝁𝒈𝒈��
 ,  (2) 

 
where 𝒙𝒙𝜖𝜖ℝ𝑝𝑝 has a multivariate Gaussian distribution with parameters 𝜽𝜽𝒈𝒈 = (𝝁𝝁𝒈𝒈,𝚺𝚺𝒈𝒈) with mean vector 𝝁𝝁𝒈𝒈 and covariance 
matrix  𝚺𝚺𝒈𝒈, we can observe that a general Gaussian mixture model contains a total of (𝐺𝐺 − 1) + 𝐺𝐺𝐺𝐺 + 𝐺𝐺𝑝𝑝(𝑝𝑝−1)

2
 parameters 

and as p increases the number of parameters to estimate in the covariance matrices to estimate also rapidly increases, limiting 
the application of this probabilistic model.  

 
2.4 Model-based discriminant analysis 

We assume a data set composed of n p-dimensional vectors 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏 is observed and we know the group labels for 
these observations. Let 𝒍𝒍𝒊𝒊 = {𝑙𝑙𝑖𝑖1, … , 𝑙𝑙𝑖𝑖𝐺𝐺} for 𝑖𝑖 = 1, … ,𝑛𝑛 be the associated label, where 𝑙𝑙𝑖𝑖𝑔𝑔 = 1 if the observation belongs 
to class g and 0 otherwise. The model-based discriminant analysis likelihood can be expressed as follows:  

𝑙𝑙(𝝑𝝑) =  ���π𝑔𝑔𝑁𝑁�𝒙𝒙𝒊𝒊,𝝁𝝁𝒈𝒈,𝚺𝚺𝒈𝒈��
𝑙𝑙𝑖𝑖𝑖𝑖

𝐺𝐺

𝑔𝑔=1

𝑛𝑛

𝑖𝑖=1

, (3) 



 
 

 

 
148-3 

 
The proportion π𝑔𝑔 is seen as the prior probability that an observation belongs to the class g. 

 
2.5 Mixture of contaminated Gaussian distributions 

In many real data situations, the presence of contamination in a data set is very likely. In this case, we can model each 
class by a mixture of two normal distributions: one for non-contaminated  𝑁𝑁(𝒙𝒙𝒊𝒊,𝝁𝝁𝒈𝒈,𝚺𝚺𝒈𝒈) and for contaminated 
𝑁𝑁(𝒙𝒙𝒊𝒊,𝝁𝝁𝒈𝒈, 𝜂𝜂𝑔𝑔𝚺𝚺𝒈𝒈), where the proportion of non-contaminated observations is 𝛼𝛼𝑔𝑔𝜖𝜖 (0,1) and the inflation of variance factor, to 
allow higher variability around the mean for contaminated observations, is given by η𝑔𝑔 > 1 [3]. We define {𝒗𝒗𝒊𝒊}𝑖𝑖=1𝑛𝑛 , 𝒗𝒗𝒊𝒊 =
(𝑣𝑣𝑖𝑖1, …𝑣𝑣𝑖𝑖𝑔𝑔) as unobserved labels indicating non-contaminated data versus contaminated data for each group, where 𝑣𝑣𝑖𝑖𝑔𝑔 = 1 
if observation i of the class g is non-contaminated and  𝑣𝑣𝑖𝑖𝑔𝑔 = 0 if observation i in class g is contaminated. The complete 
data-likelihood and log-likelihood are given by: 

 

𝑙𝑙(𝝑𝝑,𝜶𝜶,𝜼𝜼) =  ���Π𝑔𝑔�𝛼𝛼𝑔𝑔𝑁𝑁(𝒙𝒙𝒊𝒊,𝝁𝝁𝒈𝒈,𝚺𝚺𝒈𝒈)�𝑣𝑣𝑖𝑖𝑖𝑖  �(1 − 𝛼𝛼𝑔𝑔 )𝑁𝑁(𝒙𝒙𝒊𝒊,𝝁𝝁𝒈𝒈, 𝜂𝜂𝑔𝑔𝚺𝚺𝒈𝒈)�(1−𝑣𝑣𝑖𝑖𝑖𝑖)�
𝑙𝑙𝑖𝑖𝑖𝑖

𝐺𝐺

𝑔𝑔=1

𝑛𝑛

𝑖𝑖=1

, (4) 

𝑙𝑙𝑙𝑙𝑔𝑔(𝑙𝑙(𝝑𝝑,𝜶𝜶,𝜼𝜼)) =  ��𝑙𝑙𝑖𝑖𝑔𝑔 �𝑙𝑙𝑙𝑙𝑔𝑔π𝑔𝑔 + 𝑣𝑣𝑖𝑖𝑔𝑔 log �𝛼𝛼𝑔𝑔𝑁𝑁�𝒙𝒙𝒊𝒊,𝝁𝝁𝒈𝒈,𝚺𝚺𝒈𝒈 �� + (1 − 𝑣𝑣𝑖𝑖𝑔𝑔)log ((1 − 𝛼𝛼𝑔𝑔)𝑁𝑁�𝒙𝒙𝒊𝒊,𝝁𝝁𝒈𝒈,𝚺𝚺𝒈𝒈 �)�
𝑛𝑛

𝑖𝑖=1

𝐺𝐺

𝑔𝑔=1

 

 

.     (5) 

 
As mentioned in Section 2.3 the number of parameters to be estimated increases rapidly with the increase in the number 

of variables and as a result, the mixture of contaminated Gaussian distributions cannot deal with data in high-dimensional 
space. Nevertheless, this framework can be extended to manage data sets in high-dimensional spaces by wrapping a mixture 
of contaminated Gaussian models in a headlong search algorithm to select the relevant variables. 

 
2.6 Model selection 

To evaluate and select models, a data set with n observations is randomly split into subsets which are named training 
and test sets with m and n – m observations respectively. We know the group information for all n observations. However, 
we pretend that we only know the group information for m observations in the training set and not for the n – m observations 
in the test set. The training set is used to estimate the parameters of the model(s), while the test set is used to evaluate the 
model(s) with observations that were not part of the training to assess how the model(s) would perform with new 
observations. Let 𝐳𝐳𝒊𝒊 be a realization of 𝐙𝐙𝒊𝒊 for  𝑖𝑖 = 𝑚𝑚 + 1, … ,𝑛𝑛 which is a random variable that follows a multinomial 
distribution with one draw on 𝐺𝐺 categories with probabilities π1, … , π𝑔𝑔. Moreover, 𝐙𝐙𝒊𝒊 = {𝑍𝑍𝑖𝑖1, … ,𝑍𝑍𝑖𝑖𝐺𝐺} are assumed to be 
independent and identically distributed. The posterior probability can be expressed as follows: 

                                                                                                                                                                                                                                      

Pr�𝑍𝑍𝑖𝑖𝑔𝑔 = 1�𝑿𝑿𝑖𝑖� =  
�π𝑔𝑔�𝛼𝛼𝑔𝑔𝑁𝑁�𝒙𝒙𝒊𝒊,𝝁𝝁𝒈𝒈,𝚺𝚺𝒈𝒈��

𝑣𝑣𝑖𝑖𝑖𝑖  +��1 − 𝛼𝛼𝑔𝑔 �𝑁𝑁�𝒙𝒙𝒊𝒊,𝝁𝝁𝒈𝒈, 𝜂𝜂𝑔𝑔𝚺𝚺𝒈𝒈��
�1−𝑣𝑣𝑖𝑖𝑖𝑖��

∑ [πℎ[𝛼𝛼ℎ𝑁𝑁(𝒙𝒙𝒊𝒊,𝝁𝝁𝒉𝒉,𝚺𝚺𝒉𝒉)]𝑣𝑣𝑖𝑖ℎ  +[(1 − 𝛼𝛼ℎ  )𝑁𝑁(𝒙𝒙𝒊𝒊,𝝁𝝁𝒉𝒉, 𝜂𝜂ℎ𝚺𝚺𝒉𝒉)](1−𝑣𝑣𝑖𝑖ℎ)]𝐺𝐺
ℎ=1

, 𝑖𝑖 = 𝑚𝑚 + 1, … ,𝑛𝑛 (6) 

                                                  
Once the parameters are estimated, then the estimated group membership is given by 

�̂�𝑧𝑖𝑖𝑔𝑔 =  
�π�𝑔𝑔�𝛼𝛼�𝑔𝑔𝑁𝑁�𝒙𝒙𝒊𝒊,𝝁𝝁�𝒈𝒈,𝚺𝚺�𝒈𝒈��

𝑣𝑣�𝑖𝑖𝑖𝑖  +��1− 𝛼𝛼�𝑔𝑔 �𝑁𝑁�𝒙𝒙𝒊𝒊,𝝁𝝁�𝒈𝒈, �̂�𝜂𝑔𝑔𝚺𝚺�𝒈𝒈��
�1−𝑣𝑣�𝑖𝑖𝑖𝑖��

∑ �𝜋𝜋�ℎ�𝛼𝛼�ℎ𝑁𝑁�𝒙𝒙𝒊𝒊,𝝁𝝁�𝒉𝒉,𝚺𝚺�𝒉𝒉��
𝑣𝑣�𝑖𝑖ℎ  +�(1− 𝛼𝛼�ℎ  )𝑁𝑁�𝒙𝒙𝒊𝒊,𝝁𝝁�𝒉𝒉, �̂�𝜂ℎ𝚺𝚺�𝒉𝒉��

(1−𝑣𝑣�𝑖𝑖ℎ)
�𝐺𝐺

ℎ=1

, 𝑖𝑖 = 𝑚𝑚 + 1, … ,𝑛𝑛 

 

(7) 

It is clear that each observation has a posterior probability of belonging to each class. For example, if we have two 
classes then the observation will be a vector composed of two elements which are the posterior probabilities of belonging to 
each class. Let us assume we have two classes and the observation i has following posterior probabilities 𝒛𝒛𝑖𝑖 = (0.2,0.8). 
There are cases where we need to allocate an observation to one class, so we allocate it to the class with the maximum 
posterior probability (MAP). In the above case 𝑀𝑀𝑀𝑀𝑀𝑀(0.2,0.5) = (0,1), i.e. the 𝑖𝑖𝑡𝑡ℎ observation is assigned to the 2𝑛𝑛𝑛𝑛 class.  
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In general, 

𝑀𝑀𝑀𝑀𝑀𝑀(�̂�𝑧𝑖𝑖𝑔𝑔) = �1,  𝑖𝑖𝑓𝑓 𝑔𝑔 = arg𝑚𝑚𝑚𝑚𝑥𝑥ℎ  �̂�𝑧𝑖𝑖ℎ
0, 𝑙𝑙𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒  

 
(8) 

When there are different candidate models, a model selection criterion is needed. There are many different metrics 
proposed to choose a model among different candidate classification models. Very common metrics used to choose 
models are accuracy, sensitivity, specificity, F1-score, area under the curve (AUC), and others. These metrics are usually 
calculated over the test set. We define true positive 𝑇𝑇𝑀𝑀𝑔𝑔 as the number of observations predicted in class g that actually 
belong to class g. Similarly, we define true negative 𝑇𝑇𝑁𝑁𝑔𝑔 as the number of observations predicted not to be in class g 
that actually do not belong to class g and false positive 𝐹𝐹𝑀𝑀𝑔𝑔 as the number of observations predicted in class g that 
actually belong to a different class (false negatives 𝐹𝐹𝑁𝑁𝑔𝑔 analogously). In a two-class case (positive and negative classes), 
a cross classification table is shown in Table 1. 

 
Table 1: Cross classification table for two class problem 

 
Predicted   

Actually 
Positive 

Actually 
negative 

Total 

Positive TP FP TP + FP 
Negative FN TN FN + TN 
Total TP + FN TP + TN Total (=n-m) 

 
 

Accuracy for a classification method  is calculated by dividing the number of correctly predicted labels by the total 
number of observations in the test set. 

 

𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑚𝑚𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑀𝑀 + 𝑇𝑇𝑁𝑁

𝐹𝐹𝑀𝑀 + 𝐹𝐹𝑁𝑁 + 𝑇𝑇𝑀𝑀 + 𝑇𝑇𝑁𝑁
 

 
(9) 

 
2.7 Wrapping a mixture of contaminated normal distribution in a forward head-long search algorithm 

We propose using the headlong forward variable search algorithm (Nielsen et al, 1998) for the contaminated 
discriminant analysis model. This search approach (with a different classification model) has been used previously in 
spectroscopic data sets with success [6]. The steps of the headlong forward variable search algorithm as follows: 

 
1. Order the variables in terms of initial classification power calculating their univariable F-statistics based on the 

g groups for the training data in increasing order for the variables. (They remain in this order for all following 
steps unless removed). 

2. To choose the first variable to be included in the proposed model, do a greedy search of one-dimensional 
proposed models of the variables, calculating accuracy (9) for each one-dimensional model and choosing the 
variable which gives us the highest accuracy on the test set to obtain the proposed model that will be our new 
current model. 

3. The general inclusion step is decided using the sets of selected variables and non-selected variables. Check one 
variable at a time from the non-selected variables set for inclusion in the proposed model and if the accuracy on 
the test set improves over the current model, update the current model by adding this proposed variable to the 
set of selected variables and stop. 

4. Repeat the inclusion step. Stop the search algorithm if at any stage we get to the end of the list of non-selected 
variables without improvement or if all variables are selected.  
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3 Simulation study 
We propose a framework for simulating different scenarios and assessing proposed models. In this framework, we varied 

the distance between group means, number of groups, class proportions,  number of variables and type of pairwise 
correlation. In all cases there were 2 true separating variables with the remainder being non-separating. We considered the 
following settings (see Table 2).  

Table 2: Different factor settings in simulation framework. 
 

Factors Description Levels 
V Set of variables to train the model True variables, all variables, variables selected by headlong search 
F1 The distance between mean classes Very overlapping (VO) (difference = 1.5𝜎𝜎) 

Medium distance (MD) (difference = 3𝜎𝜎 ) 
Very distant (VD) (difference = 6𝜎𝜎) 

F2 Number of groups 2, 3 
F3 Class proportion Balanced (0.5/0.5) 

Unbalanced (0.9/0.1) 
F4 Number of variables 4,100 
F5 Correlation structure Strong correlation between separating variables (SCBSV) (𝜌𝜌 =

0.8) 
Strong correlation between separating and no separating variables 
(SCBSNSV) (𝜌𝜌 = 0.8) 
Strong correlation between no separating variables (SCBNSV) 
(𝜌𝜌 = 0.8) 
Independence (IND) (𝜌𝜌 = 0) 

   
 
The number of total simulations per setting is 100 and the number of simulated settings is 92 which means an overall count 
of 9,200 simulated data sets. 
To have an idea of what the potentially influential factors are in terms of accuracy, we looked at box plots for each factor 
across all other factors in 4 dimensions (see Figure 1). In this example, half of the variables (𝑋𝑋2 and 𝑋𝑋4) contain group 
information while the other half are noisy variables (𝑋𝑋1 and 𝑋𝑋3)  and we can observe that using the model that uses the 
selected variables produces better performance in comparison with including the true variables or all the variables. It seems 
that the accuracy is affected negatively by the number of classes, a strong correlation between separating variables in the 
covariance structure, and a very overlapping distance between group means. It is expected that having a very overlapping 
distance between groups would negatively impact the performance of classification models since this represents a more 
difficult classification problem. Consequently, if our proposed approach can deal with this scenario in 4 dimensions, where 
half of the variables are noisy and in a higher dimension (100), where 98% of the variables are noisy, then we might assume 
that it performs better in data sets where class separation is clearer. Hence, it is plausible to explore more closely settings 
with very overlapping class mean distances. 
  
3.1 Classification in the presence of contamination for two group balanced data sets with very overlapping 
group means 

We look at data sets with very overlapping group means in low and higher dimensions and with different covariance 
structures to observe the behaviour of our proposed approach. The groups are balanced and the performance of models is 
given by their accuracy in the test set. We expect to see a higher mean accuracy using the selected variables for the test set 
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in comparison with using true variables and all variables, especially in higher dimensions. 

 
 Fig. 1: Accuracy by sets of variables for settings with variation in the following factors F1,F2,F3, and F5 (see Table 2) in 4 

dimensions  
 

 
 Fig. 2: Accuracy by sets of variables for two balanced groups mapped in 4 dimensions (left) and 100 dimensions (right) for 

different covariance structures 
 

3.1.1 Balanced data sets in 4 dimensions 
We can observe the accuracy of two balanced groups in 4 dimensions for different covariance structures (see Figure 2). 

We notice that adding all variables has a negative impact on the accuracy. However, the use of the selected variables improve 
the mean accuracy by an average of 2% and 5% in comparison with using all variables and the true variables. 

 
3.1.2 Balanced data sets in 100 dimensions 

If the data set is in higher dimensions, for example in 100 variables the increase in the average accuracy obtained 
using the selected variables is larger in comparison with the other two sets of variables for all covariance structures. We 
notice that adding all variables harms the accuracy.  Nevertheless, the use of the selected variables improves the mean 
accuracy of the model by an average of 32% and 10% in comparison with using all the variables and the true variables 
(see Figure 2). 
 
3.2 Classification in the presence of contamination in unbalanced datasets 

We repeat the same analysis but considering 2 unbalanced groups in 4 and 100 dimensions to evaluate how the 
average accuracy using different sets of variables might be impacted.  
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 Fig. 3: Accuracy by sets of variables for two unbalanced groups mapped in 4 dimensions (left) and 100 dimensions (right) for 

different covariance structures. 
 
3.2.1 Unbalanced data sets in 4 dimensions 

It seems that in these simulated data sets the average accuracy improves using the selected variables for all covariance 
structures for data sets in 4 dimensions (see Figure 3). Moreover, the use of the selected variables produces classification 
models with slightly better performance in terms of mean accuracy by an average of 2.1% and 2.3% in comparison with 
using all the variables and the true variables. Nevertheless, there is not a large difference between using all variables and the 
true variables. Using all variables harms the mean accuracy by an average of 0.3% in comparison with using the baseline 
(the true variables). 

 
3.2.2 Unbalanced data sets in 100 dimensions 

When we revisit the previous scenario in a higher dimension, we observe in Figure 3 that when the number of noisy 
variables increases, it is clearer that using the selected variables produces classification models with better performance in 
terms of mean accuracy by an average of 8% and 3% in comparison with using all the variables and the true variables. 
 
3.3 Modeling accuracy by factors 

Suppose we are measuring the accuracy y of a classification model applied to simulated data coming from the settings 
described (see Table 2). For each setting 100 data sets are simulated and for each simulation, the accuracy of the models for 
three different sets of variables (true separating variables, all variables and variables selected by headlong search) is recorded.  

 
3.3.1 Modeling accuracy with a linear mixed effects model 

We start by looking at accuracy as a function of the factors describing the data sets (Table 2). The model is expressed 
as: 

 
𝐴𝐴𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛼𝛼1𝑉𝑉𝑖𝑖𝑖𝑖 + 𝛽𝛽1𝐹𝐹1𝑖𝑖+𝛽𝛽2𝐹𝐹2𝑖𝑖 + 𝛽𝛽3𝐹𝐹3𝑖𝑖 + 𝛽𝛽5𝐹𝐹5𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

 
(10) 

where  
𝐴𝐴𝑖𝑖𝑖𝑖 accuracy measurement for the 𝑖𝑖𝑡𝑡ℎ simulation and 𝑗𝑗𝑡𝑡ℎ set of variables, i = 1, …, 19,200 and j = 1,…,3 
𝛽𝛽0 intercept 
𝑉𝑉𝑖𝑖𝑖𝑖 𝑗𝑗𝑡𝑡ℎ set of variables used in the 𝑖𝑖𝑡𝑡ℎ 𝑒𝑒𝑖𝑖𝑚𝑚𝐴𝐴𝑙𝑙𝑚𝑚𝑜𝑜𝑖𝑖𝑙𝑙𝑛𝑛 
𝐹𝐹1𝑖𝑖 distance between mean classes for the 𝑖𝑖𝑡𝑡ℎ simulation 
𝐹𝐹2𝑖𝑖 number of classes for the 𝑖𝑖𝑡𝑡ℎ simulation  
𝐹𝐹3𝑖𝑖 class proportion for the 𝑖𝑖𝑡𝑡ℎ  simulation 
𝐹𝐹5𝑖𝑖 covariance structure for the 𝑖𝑖𝑡𝑡ℎ simulation 
𝑏𝑏𝑖𝑖 random effects for simulation where 𝑏𝑏𝑖𝑖~ 𝑁𝑁(0,𝜎𝜎𝑏𝑏2) 
𝜀𝜀𝑖𝑖𝑖𝑖 error for the where 𝜀𝜀𝑖𝑖𝑖𝑖~ 𝑁𝑁(0,𝜎𝜎𝜀𝜀2) 
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We  can observe that for data sets with 4 variables all main effects are significant and that group mean distance and 
number of classes factors have the largest effect on accuracy (Table 3). In addition, increasing the number of classes to 
having a covariance structure with strong covariance between separating variables SCBSV, and a group mean distance 
overlapping (VO) contribute negatively to accuracy (Table 3). We checked the residual plots for violations of the 
assumption and were satisficatory. 

 
Table 3: Coefficient estimates of the model for accuracy. 

 
 Sources Estimate p-value 
Intercept 0.91 <.0001 
Variables – Selected 0.01 <.0001 
Variables – True -0.00 <.0001 
Proportion – Unbalanced 0.06 <.0001 
Number of classes – 3 -0.09 <.0001 
Covariance Structure – SCBNSV 0.02 <.0001 
Covariance Structure – SCBSNSV 0.02 <.0001 
Covariance Structure – SCBSV -0.04 <.0001 
Group Mean Distance – VD 0.04 <.0001 
Group Mean Distance – VO -0.09 <.0001 

 
4. Conclusion 

The result of simulations suggests that when we add more noisy variables, the performance of a classification model 
with balanced or unbalanced data using the selected variables will be better than using the true separating variables or 
all variables. Using all the variables is problematic because this limits the cases we can apply the model due to the 
number of observations needed to estimate the large number of parameters resulting from high dimensions. In addition, 
we will never know the true variables that separate groups in practice. The proposed approach seems to be useful in 
different settings, especially in higher dimensions where there is the presence of contaminated samples and a huge 
number of noisy variables. 
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