
Proceedings of the 6th International Conference on Statistics: Theory and Applications (ICSTA'24) 
Barcelona, Spain – August 19 - 21, 2024 
Paper No.116 
DOI: 10.11159/icsta24.116 

116-1 

 

Mutual Information Based Correlation Analysis of Health-Related 
Multiple Air Pollutants 

 
Huawei Han1, Wesley S. Burr2 

Trent University  
1600 West Bank Drive, Peterborough, ON Canada 

rebeccahan@trentu.ca; wesleyburr@trentu.ca 
 
 
Abstract – Air pollutants and their adverse impacts on public health have been extensively considered in environmental epidemiology 
studies. Human health risk models with short-term air pollutant exposure have been of research interest for years, and the statistical 
methodologies have been developed, both univariate models and multivariate models which consider the joint-effects of air pollutants. 
However, the challenge of including multiple pollutants simultaneously for health risk assessment still exists, especially considering the 
problems of statistical interaction of pollutants, risk factor selection, and variable dimension reduction. This paper presents a mutual 
information based correlation analysis of air pollutants in Toronto, ON, Canada with the purpose of facilitating risk factor selection in 
multi-pollutant health risk models. In this work, the air pollutants datasets from the Canadian National Air Pollution Surveillance (NAPS) 
Program are prepared, and mutual information based correlation of different air pollutants are analysed. Results show that mutual 
information can provide effective dependency evaluation of air pollutants, allowing for more targeted and strategic variable selection for 
health risk models. 
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1. Introduction 

Short- and long-term exposure to air pollutants has been associated with adverse public health effects in numerous 
epidemiology studies.  Exposure to the major air pollutants like ground-level ozone (O3), particulate matter (PM), and oxides 
of sulphur (SOx) and nitrogen (NOx) have been shown to have a relationship with increasing cardiovascular diseases [1, 2], 
respiratory diseases [3], and mortality and morbidity [4]. Among all air pollutant-related epidemiological studies, one widely 
used method is using time-series models, specifically generalized additive models (GAMs) to assess the short-term risk of 
ambient air pollutants on public health [5-9]. These models and methods have developed from using a single air pollutant as 
the risk factor in early work, to attempts at using multiple ones simultaneously in later works. In these multiple-pollutant 
health risk assessment studies, the adverse effects of combinations of different kinds of air pollutants are discussed [10-15]. 
Although the multiple-pollutant risk estimation models are closer to the actual environment, as people are generally exposed 
to different air pollutants simultaneously, challenges still exist in their modelling and analysing. On the one hand, different 
air pollutants are physically and chemically mixed from their emission sources to the human interaction during their 
spreading. These mixtures are not easy to capture and explain in the multi-pollutant statistical models. On the other hand, 
correlations between different pollutants make the selection of primary risk factors for some particular heath issue difficult, 
especially with some highly correlated pollutants like NO, NO2 and NOx or PM10 and PM2.5. Moreover, collinearity brought 
by correlated air pollutants reduces their interpretation and statistical significance in regression analysis.  

With the aforementioned issues, correlation analysis of different air pollutants is usually done to support the risk 
assessment modelling process, especially the variable selection component. As the associations between different air 
pollutants are usually nonlinear for different datasets and problems, the Pearson correlation coefficient (PCC) used in our 
previous work [14, 15] for screening cannot always capture the pollutants’ relationship properly. In order to facilitate the 
modelling process and the analysis of the adverse effects, mutual information based correlation analysis is applied to the 
ambient air pollutants data obtained from the National Air Pollution Surveillance database managed by Environment and 
Climate Change Canada [16]. In Section 2, the air pollutant dataset used for analysis is introduced and pre-processed. In 
Section 3, mutual information-based maximal information coefficient is used to capture and analyse the relationship of 
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different air pollutants and comparisons with Pearson correlation coefficients are presented. A conclusion is made in Section 
4.   

 
 

2. Data Preparation 
The ambient air pollutants data used in the following analysis are from the Canada-Wide Air Quality Database of the 

National Air Pollution Surveillance program. This program aims to evaluate air quality related health issues and Canadian 
environmental sustainability. The air pollutants are monitored continuously and include NO, NO2, NOX, CO, SO2, O3, PM2.5 
and PM10. Based on their original hourly concentration, 24-hour mean concentrations are usually used as the human exposure 
factor for investigating their health risk impacts. In this study, daily means of the air pollutants are first calculated and then 
imputation [17] is used to deal with the missing days caused by sensor malfunction. As a majority of PM10 data are not 
available and the data for 2022 have not been updated for the impact of the COVID-19 pandemic, the other seven air 
pollutants are used in this work with the measurement timescale set to 2000-2021. In addition, historical daily mean 
temperature from the Canadian Centre for Climate Services [18] is also used as a health risk factor as in most models, and 
missing days are also imputed. 

The datasets of temperature (T) and seven air pollutants from 2000-2021 for Toronto, ON, Canada are shown in Fig. 1. 
It can be seen that temperature and ozone have obvious periodicities on a yearly basis. People are prone to be exposed to 
higher O3 concentrations in high temperature months as the O3 concentration is closely related to solar irradiance due to the 
chemistry of the formation. While the daily concentrations of CO, NO, NO2, NOX and SO2 all have downward trends for the 
years to be analysed, due to increasing air pollution standards and decreases in polluting sources. It can also be seen that the 
concentrations of PM2.5 are more stable over this time span. 

 

 
Fig. 1: Daily mean of temperature and air pollutants for Toronto, ON, Canada from 2000 to 2021 
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It is known from the physical and chemical formation process that the aforementioned air pollutants have complex 
associations and cannot be seen as independent factors in the health risk assessment models. As the air pollutant time series 
are usually pre-processed to remove their time dependency before being applied to health risk assessment, the relations of 
several time-residual air pollutants are visualized in Fig. 2 using the 22 years of data. In the first subfigure of Fig. 2, the 
relation between time-residual NO and time-residual NOX is approximately linear, which tracks given NO as a component 
within NOX. In the other three subfigures, the long timescale-independent relations of O3 and temperature, O3 and PM2.5 as 
well as NO2 and CO are not obviously linear. Using the Pearson correlation to evaluate the degree of their relevance may not 
be able to capture their true relations, especially when choosing air pollutants that contribute to the health risk in statistical 
assessment models like GAMs.  

  

 
Fig. 2: Relations of different air pollutants (short timescale only residuals) for Toronto, ON, Canada. 

 
 
3. Mutual Information Based Correlation Analysis of Air Pollutants 
       In order to effectively measure the correlations of these air pollutants in a general form and facilitate the analysis of their 
contributions in health risk assessment models, mutual information (MI) is used to capture both the linear and nonlinear 
relations. MI is a quantity that can evaluate the mutual dependence of two random variables by using entropy to measure the 
uncertainty [19]. A higher absolute value of MI indicates a stronger relation (positively or negatively correlated) between 
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two variables, and a lower one indicates that they are weakly associated. Zero value indicates that there is no statistical 
correlation. For two different air pollutants X and Y, their MI can be calculated using discrete samples as follows: 
 

𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) = ��𝑝𝑝𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦)𝑙𝑙𝑙𝑙𝑙𝑙2
𝑝𝑝𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦)
𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑋𝑋(𝑦𝑦)

𝑦𝑦𝑥𝑥

 (1) 

 
where pXY(x, y) is their joint probability distribution, and pX(x) and pY(y) are their marginal distributions.  

Although mutual information in Eqn. (1) can capture various relations between different air pollutants, there still exist 
some limitations for our datasets. The main problem is that the monitored air pollutants are measured with different units on 
different scales, and mutual information between different variables cannot be adjusted to a common scale, the result of 
which is that comparison of mutual information for different air-pollutant pairs is not available. Therefore, mutual 
information based maximal information coefficient (MIC) [20] is used in our analysis. MIC is a quantity developed from MI 
to measure the association between two random variables in a normalized form. Its main idea is to use a binning method to 
partition the variables into different bins and choose the gridding with maximum normalized MI. MIC used in the following 
correlation analysis is written as: 
 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) = 𝑚𝑚𝑚𝑚𝑥𝑥
𝑛𝑛𝑋𝑋×𝑛𝑛𝑌𝑌<𝑁𝑁

𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌)
𝑙𝑙𝑙𝑙𝑙𝑙2min(𝑛𝑛𝑋𝑋 ,𝑛𝑛𝑋𝑋) (2) 

 
where nX and nY are the number of grids for air pollutants X and Y, and N is a value related to the number of samples. It is set 
to S0.6 in the following analysis (S is the sample number). Note also that the MI(X, Y) in Eqn. (2) is the mutual information 
calculated based on partition of two air-pollutant samples to nX ×nY, where their joint and marginal probability distributions 
are calculated. The scale of MIC is from 0 to 1 and this normalized form can be used to compare the associations of different 
air-pollutant pairs with various measurements.  

With Eqns. (1) and (2), the relations of different air pollutants (including temperature) for Toronto, ON, Canada are 
evaluated using pre-processed data and presented in the heat map of Fig. 3, where PCC stands for Pearson correlation 
coefficient (absolute value) and MIC is the maximal information coefficient. It can be seen from the figure that the 
correlations measured using MICs are relatively milder than using PCCs in general. Compared to PCCs, the influence of T 
on concentrations of air pollutants is smaller evaluated using MICs except for NO and NOX. Both PCCs and MICs show that 
CO, NO, NO2, NOX and SO2 are weakly associated with T, while MICs show a relatively stronger relationship between NO 
or NOX and T. This implies that PCCs are not able to capture all the associations and cannot fully reflect their relevance for 
screening and variable selection. CO and PM2.5 are correlated with the other six air pollutants and temperature, evaluated 
using both PCCs and MICs, with MICs showing weaker relations. SO2 and O3 are also shown to have some relevance with 
other five pollutants using both PCCs and MICs. However, MIC shows a mild relationship between SO2 and O3, where their 
PCC shows they are almost independent. This is another case that PCC does not fully capture the relations between different 
pollutants. Although the MIC values are relatively smaller, both PCCs and MICs show strong correlations of NO, NO2, and 
NOX, as these pollutants usually come from human activity and have the same sources like industrial emission, fossil fuel 
electric utilities and motor vehicles. 
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Fig. 3: Comparison of PCCs and MICs with data of all seasons for Toronto, ON, Canada. 

 
Furthermore, as the health risk in air pollutant-related risk assessment models like GAMs is usually evaluated for 

different seasons, relations of different air pollutants using data of both warm (from April to September) and cold (from 
October to March) seasons are evaluated and presented in Fig. 4 and Fig. 5, respectively. It can be seen from the figures that 
in both cold and warm seasons associations evaluated using MICs are milder than using PCCs in general, following the 
patterns in Fig. 3. However, MIC values for T and NO, T and NO2, and T and NOX in cold seasons, as well as MIC values 
for T and NOX, CO and O3, NO and PM2.5, NO2 and O3 in warm seasons are all larger than their PCC values. This means 
that in these different season scenarios MIC still shows its capability to capture more associations between different air 
pollutants compared to PCC, and that PCC may lead to incorrect association conclusions in nonlinear situations. 

 

  
Fig. 4: Comparison of PCCs and MICs with data of cold seasons (from October to March) for Toronto, ON, Canada. 
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Fig. 5: Comparison of PCCs and MICs with data of warm seasons (from April to September) for Toronto, ON, Canada. 

 
Note that in the above analysis, the values of PCC are mainly used for comparison and they may be not effective in 

situations where the relations between different air pollutants are not linear. Compared to PCC, as MIC can capture multiple 
types of associations instead of only linearity captured by PCC, this provides a more effective approach for dependency 
analysis and has the potential to facilitate risk factors selection for air pollutant related health models like GAMs as well as 
analysis of their risk contributions therein. 

  
 
4. Conclusion 

Research of ambient air pollutants on human health has been of interest for years in environmental epidemiology 
studies. As different air pollutants are usually correlated with complex physical and chemical processes, analysing their 
associations is helpful for selection of risk factors and variable inputs to the models, and hence analysis of their contributions 
in health risk models. In this work, mutual information-based maximal information coefficient is used to evaluate the 
relations of different ambient air pollutants. Using air pollutant data from 2000 to 2021 for Toronto, ON, Canada, 
comparisons with Pearson correlation are made and results show that Pearson correlation is less effective in general relevance 
evaluation and even provides wrong measurements under nonlinear dependencies, while maximal information coefficient 
can capture different kinds of associations and provides a more effective approach for the objective of correlation analysis. 
In conclusion, maximal information coefficient is an effective association metric and has the potential to facilitate risk factors 
selection and risk contribution analysis for statistical health risk models in the future work.  
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