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Abstract - Change point analysis aims at identifying significant distributional shifts and changes in data sequences. While the problem 
has been extensively studied for standard low dimensional data, the transition to high dimensional data imposes several challenges. 
This paper delves into the complexities of change point detection with high dimensional data, discussing the main difficulties associated 
with high dimensional change point analysis and demonstrating some limitations of the recent methods. The paper also discusses an 
approach for post detection analysis with high dimensional change points. 
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1. Introduction 
Change point analysis is a class of statistical methods with broad applications in various domains such as medicine, biology, 
engineering, environmental monitoring, finance, and marketing [1]. The main problem involves examining whether there is 
a significant distributional change in data before and after a point in time or space. When dealing with a sequence of ordered 
observations, such as a time series, the primary objective of change point analysis concerns two important questions:  

a) Is there a change in the underlying distribution of the data sequence?  
b) If a change is indeed detected, where precisely does it occur within the sequence?  

These questions encompass the concepts of change point testing and estimation, which constitute fundamental aspects of 
change point analysis. The classical methods assume an increasing number of observations 𝑛𝑛 towards infinity while 
maintaining a fixed dimension or number of variables 𝑝𝑝; however, recent technological advances in data collection and 
storage capabilities have led to a substantial rise of data with large dimensions. In high dimensional data, the number of 
variables 𝑝𝑝 is much larger than the sample size 𝑛𝑛, often expressed as 𝑝𝑝 ≫ 𝑛𝑛, with 𝑝𝑝 potentially reaching tens of thousands. 
This form of data imposes inherent complexities and heterogeneity in the underlying data generation processes. These 
challenges pose significant obstacles to accurately detect change points in higher dimensions. It is generally challenging to 
distinguish (small) significant changes from just random variability (i.e., noise) in high dimensional data. Such high 
dimensional noise can prevent or impede the precise detection of change point locations. Also, post detection analysis is 
important but remains understudied in the context of high dimensional change points. 

 
2. Change point problem and the AMOC model  
Consider a sequence of 𝑛𝑛 random observations 𝑿𝑿1,𝑿𝑿2, … ,𝑿𝑿𝑛𝑛, each 𝑝𝑝-dimensional and with an unknown probability 
distribution. Let us denote the unknown distributions by 𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑛𝑛, respectively. As discussed in the Introduction, the 
objective is to investigate whether there is a significant change point, that is, a point in the sequence where the distribution 
of data changes. The problem of a single change point can generally be formulated as the following hypothesis test:  

 
𝐇𝐇0:𝐺𝐺1 = ⋯ = 𝐺𝐺𝑛𝑛  𝑣𝑣𝑣𝑣.  𝐇𝐇1:𝐺𝐺1 = ⋯ = 𝐺𝐺𝜏𝜏 ≠ 𝐺𝐺𝜏𝜏+1 = ⋯ = 𝐺𝐺𝑛𝑛, (1) 

 
where τ is an unknown change point location, with 𝜏𝜏 ∈ {1, … ,𝑛𝑛 − 1}. This framework accommodates both parametric and 
nonparametric scenarios. Depending on the application, one may assume that the distributions belong to a parametric family, 
say {𝐺𝐺𝑖𝑖(𝜽𝜽𝑖𝑖)}𝑖𝑖=1𝑛𝑛 , where 𝜽𝜽𝑖𝑖 is a vector of unknown parameters 𝜽𝜽𝑖𝑖 ∈ ℝ𝑝𝑝, or one may work with a nonparametric setting. In the 
parametric case, one focuses on parameters  𝜽𝜽𝑖𝑖. Under the null hypothesis in (1) all the values of  𝜽𝜽𝑖𝑖 are the same, whereas 
the alternative hypothesis says the parameter value  𝜽𝜽𝑖𝑖 changes in location 𝜏𝜏. 
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A common aspect of change point detection revolves around identifying significant changes in the mean of observations. 
This problem has been extensively studied in low dimensional settings. In the recent literature, several methods for detecting 
changes in the mean of high dimensional observations have been proposed including, but not limited to, [2], [3], [4], [5] and 
[6]. Also, a few methods have been proposed for detecting changes in the variance or covariance of data (e.g., [7] and [8]).  
Let 𝑿𝑿 = �𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝� ∼ 𝐺𝐺(𝒙𝒙)  be a random vector of observations. The data consists of 𝑛𝑛 ordered observations, denoted 
by 𝑿𝑿1,𝑿𝑿2, … ,𝑿𝑿𝑛𝑛, where 𝑿𝑿𝑖𝑖 = �𝑋𝑋𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑝𝑝� is the 𝑖𝑖𝑡𝑡ℎobservation. The change point model in this case is as follows: 
 

𝑿𝑿𝑖𝑖 = 𝝁𝝁 + 𝜹𝜹𝝁𝝁𝜏𝜏1{𝑖𝑖 ≥ 𝜏𝜏} + 𝝐𝝐𝒊𝒊, 𝑖𝑖 = 1, … ,𝑛𝑛, (2) 
 
where the vector 𝝁𝝁 represents the mean of observations before the change point, and 𝜏𝜏 ∈ {1, … ,𝑛𝑛 − 1} denotes the unknown 
location of the mean shift. The term 𝜹𝜹𝝁𝝁𝜏𝜏 = �𝛿𝛿1, … , 𝛿𝛿𝑝𝑝� corresponds to the mean shift vector after the change point location 
𝜏𝜏, if such a change exists. The vector 𝝐𝝐𝑖𝑖 denotes the error term with 𝔼𝔼(𝝐𝝐𝑖𝑖) = 𝟎𝟎 and Cov (𝝐𝝐𝑖𝑖) = 𝚺𝚺.  Model (2) is commonly 
referred to as At Most One Change point (AMOC) model. To test if there is a significant change point in the mean of 
observations, we can then carry out the following hypothesis test: 

 
𝑯𝑯𝟎𝟎:𝜹𝜹𝝁𝝁𝜏𝜏 = 𝟎𝟎 and 𝜏𝜏 = 𝑛𝑛  𝑣𝑣𝑣𝑣.  𝑯𝑯𝟏𝟏:∃𝜏𝜏 ∈ {1, … ,𝑛𝑛 − 1} such that 𝜹𝜹𝝁𝝁𝜏𝜏 ≠  𝟎𝟎. (3) 

  
For testing (3), the CUSUM statistic is frequently used which is defined as (e.g., [7]) 
 

𝑪𝑪(𝑘𝑘) = �𝑘𝑘(𝑛𝑛 − 𝑘𝑘)
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in which 𝑘𝑘 ∈  {1, . . . ,𝑛𝑛 −  1} is a candidate search location. By evaluating at each candidate search location 𝑘𝑘, one can 
construct the following test statistic (see [7]) to test the null hypothesis 𝑯𝑯𝟎𝟎 in (3): 
 

𝑇𝑇𝑛𝑛 = max
1≤𝑘𝑘≤𝑛𝑛−1

𝑪𝑪(𝑘𝑘)⊤ 𝚺𝚺−1𝑪𝑪(𝑘𝑘). (5) 
 
The test statistic 𝑇𝑇𝑛𝑛 checks all potential locations where a change point can occur by measuring the magnitude of mean 
differences before and after each candidate search location. Large values of 𝑇𝑇𝑛𝑛 indicate that there are substantial deviations 
in the means, suggesting that the null hypothesis 𝑯𝑯𝟎𝟎 should be rejected. The following section outlines some major challenges 
in detecting change points when data has a very large dimension.  
 
3. Challenges and methods for high dimensional change point detection 
In the test statistic (5), one needs the inverse covariance matrix 𝚺𝚺−1, however the sample covariance matrix 𝚺𝚺� = 1

𝑛𝑛−1
𝑿𝑿𝑇𝑇𝑿𝑿 is 

singular when the number of variables is larger than the number of observations. This is because 𝚺𝚺� does not have full column 
rank as 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝑿𝑿𝑻𝑻𝑿𝑿) ≤ 𝑚𝑚𝑖𝑖𝑛𝑛�rank�𝑿𝑿𝑻𝑻� , rank(𝑿𝑿)� ≤ 𝑚𝑚𝑖𝑖𝑛𝑛(𝑛𝑛,𝑝𝑝) = 𝑛𝑛 < 𝑝𝑝. So, it is not possible to use the test statistic (5). 
[3] suggested a non-parametric method for high dimensional change points using the so-called energy distance based on the 
Euclidean norm. We briefly explain this method known as ecp. Let 𝒁𝒁𝜏𝜏 and 𝒀𝒀𝜏𝜏 denote independent samples corresponding to 
two distinct partitions of the dataset: 𝒁𝒁𝜏𝜏 = {𝑋𝑋1, … ,𝑋𝑋𝜏𝜏} and 𝒀𝒀𝜏𝜏 = {𝑋𝑋𝜏𝜏+1,𝑋𝑋𝜏𝜏+2, … ,𝑋𝑋𝑛𝑛}. Additionally, a parameter 𝛼𝛼 ∈ (0,2) 
controls the divergence measure characteristics. The objective is to estimate the change points location, denoted as 𝜏𝜏, leading 
to the estimate �̂�𝜏, by maximizing the function ℰ̂(𝒁𝒁𝜏𝜏,𝒀𝒀𝜏𝜏;𝛼𝛼), where ℰ̂(𝒁𝒁𝜏𝜏,𝒀𝒀𝜏𝜏;𝛼𝛼) = 2
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𝛼𝛼.  [3] showed that this method performs well for change 
point detection. However, a recent study by [6] revealed some limitations with the energy distance statistic based on the 
Euclidean norm. They showed that the energy distance struggles to capture distinctions beyond the first two moments (mean 
and variance) in high dimensional settings. Moreover, it cannot detect change points when the mean and variance are the 
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same while the distribution is different. Recently, [2] introduced a parametric method based on random projection of data 
into a one-dimensional subspace. They assumed 𝑿𝑿𝑡𝑡 ∼ 𝑁𝑁𝑝𝑝�𝝁𝝁𝑡𝑡 ,𝜎𝜎2𝑰𝑰𝑝𝑝�, where {𝑿𝑿𝑡𝑡}𝑡𝑡=1𝑛𝑛  represents a high dimensional sample, 
𝝁𝝁𝑡𝑡 is the mean vector of observations {𝑿𝑿𝑡𝑡} at time 𝑡𝑡, and 𝜎𝜎2 denotes the common variance. They used a projection vector 
𝒂𝒂 ∈ ℝ𝑝𝑝, with 𝒂𝒂T𝒂𝒂 = 1, to transform the 𝑝𝑝-dimensional observations 𝑿𝑿1, … ,𝑿𝑿𝑛𝑛 into the one-dimensional observations: 
 

𝒂𝒂T𝑿𝑿𝑡𝑡 ∼ 𝑁𝑁�𝒂𝒂T𝝁𝝁𝑡𝑡 ,𝜎𝜎2�, 𝑡𝑡 = 1, … ,𝑛𝑛. 
 
[2] applied the low-dimensional CUSUM statistic (4) to estimate change point locations. However, the random projection 
method requires sparsity assumption as well as the normality assumption, which are restrictive in high dimensional settings.  

 
4. Advanced approaches for high dimensions: post detection analysis 
As a motivating example, we consider daily stock prices from multiple companies, such as S&P 500 stock price data [8], 
where detecting a significant price shift on a particular day exemplifies change point detection. Once a change point in stock 
prices is detected, the focus shifts onto validating the change reliability and determining the key variables driving this change. 
Identifying influential variables for post detection analysis is understudied in high dimensional change points. The 
identification of change points in high dimensional data is especially challenging when changes are due to a very sparse 
subset of variables. For example, as illustrated in Fig. 1(a), discerning which variables cause the observed changes can be 
daunting. Fig. 1(b) demonstrates the scenario where only six variables drive a significant change. So, it is important to address 
the intricacies of post change point detection in scenarios where changes are sparse and concentrated within a few variables. 
The goal is to pinpoint the specific variables that underlie significant shifts in the data landscape. 
 

 
 

  
 
 
 

Fig. 1 Change in mean of observations due to 6 variables out of 500, starting at change point location 130. 
 

Representing the observed data as an 𝑛𝑛 × 𝑝𝑝 matrix, we write each column of the data matrix as 𝑽𝑽𝑗𝑗 = �𝑋𝑋1𝑗𝑗, … ,𝑋𝑋𝑛𝑛𝑗𝑗�, 
representing the 𝑗𝑗𝑡𝑡ℎ variable in the data for 𝑗𝑗 = 1, . . . ,𝑝𝑝. One can then write 𝑿𝑿 = �𝑽𝑽1, … ,𝑽𝑽𝑝𝑝�. We denote by 𝑿𝑿−𝑗𝑗 the data 
matrix 𝑿𝑿 when the 𝑗𝑗𝑡𝑡ℎ column 𝑽𝑽𝑗𝑗 is excluded. Recall the AMOC model (2) which primarily focuses on mean change. If there 
is a significant change point, say �̂�𝜏, we investigate which variable(s) would cause this change. We remove each variable 𝑽𝑽𝑗𝑗 
at a time and then apply the change point method to 𝑿𝑿−𝑗𝑗. We denote the estimated change point with this by �̂�𝜏−𝑗𝑗. We then 
define Δ𝑗𝑗 = |�̂�𝜏  −  �̂�𝜏−𝑗𝑗|. If Δ𝑗𝑗 is very small then variable 𝑽𝑽𝑗𝑗 is not important, but if Δ𝑗𝑗 is large, say Δ𝑗𝑗 > 𝑡𝑡 for some threshold 
value 𝑡𝑡, for example 𝑡𝑡 =  2, we can conclude that the variable 𝑽𝑽𝑗𝑗 is an important variable for the change. 
We here conduct some simulations to evaluate the performance and effectiveness of this approach. In the simulations, we 
examine both low and high dimensional settings under different scenarios. We consider sample size 𝑛𝑛 = 100 and four 
different dimensions 𝑝𝑝 ∈  {50, 100, 200, 500}. The true change point here is set at location 𝜏𝜏 = 65. We generate the data 
from a normal distribution 𝑁𝑁(0, 0.5) and set a mean shift of 𝜹𝜹𝜇𝜇𝜏𝜏 = {1,1.5} right after the observation 𝑋𝑋65. Here, we focus 
on a simple case where changes are attributed to one variable—specifically the second variable. We apply the ecp method 
[3] on the simulated data. The simulation results over 200 replications, which are presented in Tables 1 and 2, show the 
proportion of correctly detected important variables over the 200 replications for each scenario. The frequency of truly 
detected important variables is reasonably well especially when the mean shift increases. Note that if the mean shift is small, 

(a) Without knowing the truly important variables. (b) With knowing the truly important variables. 
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the signal gets dominated by the high dimensional noise, making the identification of a significant change point and important 
variables causing it difficult. We note that the results are less satisfactory when the dimension is very large compared to the 
sample size. This is because of the high level of sparsity. When dealing with a larger number of variables, the computational 
time of this approach becomes demanding. Also, another limitation is that if several variables are equally important, 
removing one variable while retaining the others may still result in the same change point. To overcome such challenges for 
data with very high dimensions and with very sparse changes, we can use clustering techniques to group variables based on 
their similarity characteristics. Further research is required to investigate this approach in such high dimensional cases. 

 
Table 1: The proportion of correctly identified important variables over 200 simulation replications. Note that the true change 

point is set at location 𝜏𝜏  =  65 accompanied by a mean shift of 𝜹𝜹𝜇𝜇𝜏𝜏 = 1. 
𝑛𝑛 𝑝𝑝     Average �̂�𝜏𝑗𝑗 No. of truly 

important variables 
 Proportion of correctly 

identified important variables 
 

 100 

    50 66 1 53% 
   100 64 1 24% 
   200 66 1 8% 
   500 59 1 5% 

 
Table 2: The proportion of correctly identified important variables over 200 simulation replications. Note that the true change 

point is set at location 𝜏𝜏  =  65 accompanied by a mean shift of 𝜹𝜹𝜇𝜇𝜏𝜏 = 1.5. 
𝑛𝑛 𝑝𝑝   Average �̂�𝜏𝑗𝑗 No. of truly 

important variables 
Proportion of correctly 

identified important variables 
 

  100 

     50 65 1 94% 
    100 65 1 93% 
    200 65 1 77% 
    500 64 1 27% 

 
5. Conclusion  
The main challenges with change point analysis in high dimensional data were discussed, particularly by focusing on 
difficulties in accurately estimating patterns and detecting shifts when dealing with a very large number of variables. To 
identify important variables causing change points, a post detection analysis was investigated by removing variables each at 
a time. It was discussed that employing grouping techniques emerges as an efficient approach in high dimensions. 
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