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Abstract: The finite mixture model is considered as an appropriate instrument for data clustering. Different parsimonious multivariate 
mixture distributions are introduced for skewed and/or heavy-tailed longitudinal data. The eigenvalue or modified Cholesky 
decomposition of covariance matrices develops the families of parsimonious mixture models. Thus, the finite mixture of matrix-variate 
t-distributions for clustering a three-way dataset with heavy-tailed or outlier observations (e.g., multivariate longitudinal data) is more 
appropriate compared to matrix-variate normal distributions. Accordingly, the present study considered a parsimonious family of the 
finite mixture of matrix-variate t-distributions using the eigenvalue and modified Cholesky decomposition for within and between 
covariance matrices, respectively. Finally, parameter estimates were calculated using the expectation-maximization algorithm, and 
simulations studies and real data analyses were conducted to confirm the obtained results. 
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1. Introduction 

Finite mixture models in the statistical data analysis mainly contribute to modelling a heterogeneous population and 
providing an easy and model-based method for clustering and classification structure [1], [2]. Different studies have 
evaluated various finite mixtures of distributions focusing on multivariate (two-way data) distributions. For instance, such 
studies have proposed different finite mixtures of multivariate distributions, including multivariate normal distribution [3], 
multivariate t-distribution [4], multivariate skew-normal distribution [5], multivariate skew-t-distribution [6], multivariate 
normal inverse Gaussian [7], multivariate generalized hyperbolic distribution [8], and multivariate power exponential 
distribution [9] over the last two decades. 

Three-way data including multivariate longitudinal, spatial multivariate, and spatio-temporal data may be available in a 
range of scientific domains [10]. Despite the important role of matrix-variate distributions in three-way data analysis, a small 
body of research exists in this respect. For example, Viroli introduced the finite mixtures of matrix-variate normal 
distributions (MVNDs) for classifying the three-way data [11]. In addition, Anderlucci and Viroli [12] considered the finite 
mixture of MVNDs for multivariate longitudinal data. In another study, Doğru, Bulut and Arslan [13] proposed a finite 
mixture of matrix-variate t-distributions (MVTDs). Further, Gallaugher and McNicholas [14]–[16] applied four skewed 
matrix-variate distributions of matrix-variate skew-t, generalized hyperbolic, variance-gamma, and normal inverse Gaussian 
distributions in the finite mixture of these distributions. In the two- or three-way data, where there are some departures from 
normality in datasets, using normal distributions affects the estimation of some parameters [17]. The presence of outlier or 
heavy-tailed data is considered as one of the common departures from normality and in such case, the mixture of t-
distributions is an appropriate alternative to the mixture of normal distributions [13]. 

On the other hand, without any constraints on mixture parameters, the number of estimated parameters increases 
dramatically by an increase in components. Therefore, some constraints should be put on model parameters in order to 
achieve more parsimonious models. Considering a large number of mixture parameters in the covariance matrix component, 
more attention should be drawn on covariance structure decomposition. Further literature contains parsimonious covariance 
matrices in the mixture of multivariate distributions [18]–[24]. Some studies have investigated the parsimonious feature only 
in the finite mixture of MVNDs for three-way data [11], [12]. However, to the best of our knowledge, no research has applied 
the parsimonious MVTD mixture model. Therefore, the present study focused on the parsimonious mixture of MVTDs for 
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clustering multivariate longitudinal data with outliers or heavy-tails. The remaining sections of the present study are 
organized as follows. Section 2 reviews the finite mixture of MVTDs, the decomposition of covariance matrices, and the 
details of the estimates of MVTD parameters. Furthermore, Section 3 discusses the simulation studies and real examples in 
order to demonstrate the performance of models. 

 
2. Method 
2.1 Background 
2.1.1 Finite mixture of MVTDs 
A 𝑇𝑇 × 𝑝𝑝 dimensional random matrix X is assumed to arise from a parametric finite mixture if it is possible to write 𝑝𝑝(𝑿𝑿|𝜗𝜗) =
∑ 𝜋𝜋𝑖𝑖𝑝𝑝𝑖𝑖(𝑿𝑿|𝜃𝜃𝑖𝑖)𝑘𝑘
𝑖𝑖=1  for all 𝑿𝑿 ⊂ 𝛘𝛘, where 𝝑𝝑 = (𝜋𝜋1, … ,𝜋𝜋𝑘𝑘 ,𝜃𝜃1, … ,𝜃𝜃𝑘𝑘) is the vector of parameters, and 𝜋𝜋𝑖𝑖 and k are the mixing 

proportion and the number of mixture components, respectively, so that ∑ 𝜋𝜋𝑖𝑖𝑘𝑘
𝑖𝑖=1 = 1 and 𝜋𝜋𝑖𝑖 ∈ [0,1]. Additionally, 𝑝𝑝𝑖𝑖(𝑿𝑿|𝜃𝜃𝑖𝑖) 

is referred to as the density of the component. In the mixture of MVTDs, component density with a 𝑇𝑇 × 𝑝𝑝 mean matrix 𝑴𝑴𝑖𝑖, 
two covariance matrices 𝚽𝚽𝑖𝑖 and 𝛀𝛀𝑖𝑖 with dimensions 𝑇𝑇 × 𝑇𝑇 and 𝑝𝑝 × 𝑝𝑝, and degrees of freedom 𝑣𝑣𝑖𝑖 is as follows [25]: 

 

𝑀𝑀𝑀𝑀(𝑇𝑇×𝑝𝑝)(𝑿𝑿|𝑴𝑴𝑖𝑖 ,𝜱𝜱𝑖𝑖 ,𝜴𝜴𝑖𝑖 , 𝑣𝑣𝑖𝑖) =
𝛤𝛤 �𝑇𝑇𝑝𝑝 + 𝑣𝑣𝑖𝑖

2 �

(𝜋𝜋𝑣𝑣𝑖𝑖)
𝑇𝑇𝑝𝑝
2  𝛤𝛤 �𝑣𝑣𝑖𝑖2�  |𝜱𝜱𝑖𝑖|

𝑝𝑝
2  |𝜴𝜴𝑖𝑖|

𝑇𝑇
2

 �1 +
𝑀𝑀𝑡𝑡{(𝑿𝑿 −𝑴𝑴𝑖𝑖)′𝜱𝜱𝑖𝑖

−1(𝑿𝑿 −𝑴𝑴𝑖𝑖)𝜴𝜴𝑖𝑖
−1}

𝑣𝑣𝑖𝑖
�
−𝑇𝑇𝑝𝑝+𝑣𝑣𝑖𝑖2

   (1) 

 
where T and p indicate the number of measurement times and the number of response variables, respectively. In addition, 
𝚽𝚽𝑖𝑖 and 𝛀𝛀𝑖𝑖 are commonly referred to as between and within covariance matrices, respectively. In the present study, the upper 
case boldface was used for the matrices. The MVTDs arise as a particular case of a normal-variance mixture distribution. In 
this formulation, the random matrix X is defined as 𝑿𝑿 = 𝑴𝑴 + 𝑊𝑊

1
2𝑽𝑽, where the matrix random V has the MVND with the mean 

matrix 0 and covariance matrices 𝜱𝜱 and 𝜴𝜴, 𝑽𝑽~𝜙𝜙(𝑇𝑇×𝑝𝑝)(𝑿𝑿|𝑴𝑴,𝜱𝜱,𝜴𝜴), and the latent random variable W follows an inverse gamma 
distribution with parameters (𝑣𝑣

2
, 𝑣𝑣
2
) [13]. In addition, the estimates of 𝛀𝛀𝑖𝑖 and 𝚽𝚽𝑖𝑖 are not unique. For each positive and nonzero 

constant a, we have 𝛀𝛀𝑖𝑖 ⊗𝚽𝚽𝑖𝑖 = 𝑎𝑎𝛀𝛀𝑖𝑖 ⊗ �1
𝑎𝑎
�𝚽𝚽𝑖𝑖.The constraint 𝑀𝑀𝑡𝑡(𝛀𝛀𝑖𝑖) = 𝑝𝑝 or 𝑀𝑀𝑡𝑡(𝚽𝚽𝑖𝑖) = 𝑇𝑇 can be used to obtain an identifiable 

solution for 𝛀𝛀𝑖𝑖 and 𝚽𝚽𝑖𝑖 [12], [14].  
 
2.1.2 The decomposition of covariance matrices 
Restrictions on mixture parameters are typically constructed by constraining covariance matrices. To achieve parsimonious 
models, eigenvalue and the modified Cholesky decompositions were used for the between and within covariance matrices, 
respectively. 

 

The eigenvalue decomposition 
The eigenvalue decomposition was used in multivariate normal mixtures and the other multivariate mixture distributions 

such as t-mixture distributions [22], along with skew-normal and skew-t mixture distributions [24] for clustering, 
classification, and discriminant analysis. On the other hand Viroli [11] and. Sarkar et al. [27] applied the eigenvalue 
decomposition in the mixture of MVNDs. This parameterization includes the expression within component-covariance 
matrix (𝛀𝛀𝑖𝑖) in terms of its eigenvalue decomposition as 𝛀𝛀𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑫𝑫𝑖𝑖𝑨𝑨𝑖𝑖𝑫𝑫𝑖𝑖

′, where 𝑫𝑫𝑖𝑖 denotes the matrix of eigenvectors 
Furthermore, 𝑨𝑨𝑖𝑖 is a diagonal matrix whose elements are proportional to the eigenvalues of 𝛀𝛀i and 𝜆𝜆𝑖𝑖 represents the 
associated proportionality constant. Different sub-models can be defined by considering homoscedastic or varying quantities 
across mixture components [11], [20]. 
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Modified Cholesky decomposition 
The between component-covariance matrix (𝚽𝚽𝑖𝑖) of the multivariate longitudinal data can be decomposed by the 

modified Cholesky decomposition. Anderlucci and Viroli [12] employed the above-mentioned decomposition along with the 
eigenvalue decomposition for the between and within covariance structures in the mixture of MVNDs, respectively. The 
modified Cholesky decomposition was expressed as 𝚽𝚽𝑖𝑖

−1 = 𝑼𝑼𝑖𝑖
′𝑻𝑻𝑖𝑖−1𝑼𝑼𝑖𝑖 where 𝑼𝑼𝑖𝑖 is a unique lower triangular matrix with 

diagonal elements 1 and 𝑻𝑻𝑖𝑖 denotes a unique diagonal matrix with strictly positive diagonal entries representing innovation 
variances. The lower diagonal elements in 𝑼𝑼𝑖𝑖 equal the negative coefficients resulted from the regression of 𝑋𝑋𝑡𝑡 on 
𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡−2, … . ,𝑋𝑋1 e.g 𝑋𝑋�𝑡𝑡 = 𝑀𝑀𝑡𝑡 + ∑ 𝜙𝜙r,𝑠𝑠

(𝑖𝑖)(𝑋𝑋𝑡𝑡 − 𝑀𝑀𝑡𝑡)𝑡𝑡−1
𝑠𝑠=1  [28]. On the other hand, different orders (m) can be considered in matrix 

𝑼𝑼𝑖𝑖, where m can range from 0 to T-1. The lower orders provide more parsimonious models so that m=0 and m=1 equal the 
independency of different times and the dependency of 𝑿𝑿𝑡𝑡 on a previous time (𝑿𝑿𝑡𝑡−1), and the like. Accordingly, the modified 
Cholesky decomposition for the temporal covariance matrix equals the generalized autoregressive with process order m, 
GAR(m). Thus, the rth row elements of matrix 𝑼𝑼𝑖𝑖 which should be estimated can be written as  
�−𝜙𝜙𝑡𝑡,𝑡𝑡−𝑚𝑚

(𝑖𝑖) ,−𝜙𝜙𝑡𝑡,𝑡𝑡−𝑚𝑚+1
(𝑖𝑖) , … ,−𝜙𝜙𝑡𝑡,𝑡𝑡−1

(𝑖𝑖) �
′
; 𝑡𝑡 = 2, … , 𝑇𝑇, 𝑚𝑚 = 0,1, … , 𝑇𝑇 − 1. Additionally, matrix 𝑻𝑻𝑖𝑖 can be defended as 𝑻𝑻𝑖𝑖 = 𝑑𝑑𝑖𝑖𝐼𝐼𝑇𝑇 

(Isotropic) for a more parsimonious model. In addition, different sub-models can be defined by considering homoscedastic 
or varying quantities (i.e., 𝑼𝑼𝑖𝑖 and 𝑻𝑻𝑖𝑖) across mixture components [12]. 

 

2.2 Estimation of parameters 
To find the maximum likelihood estimators for mixture parameters, the present study used an expectation-maximization 
(EM) algorithm [29] which was proposed by Doğru, Bulut and Arslan [13] for the mixture of MVTDs. Assume that 
𝑿𝑿1, … ,𝑿𝑿𝑛𝑛, where n is the number of observations, be a random sample of matrices from the mixture of MVTDs, and 𝑍𝑍𝑖𝑖𝑖𝑖 
denotes the component membership of observation j. Further, 𝑍𝑍𝑖𝑖𝑖𝑖 = 1 if the jth observation is from component i, otherwise, 
𝑍𝑍𝑖𝑖𝑖𝑖 = 0, where 𝑗𝑗 = 1 , … ,𝑛𝑛 and 𝑖𝑖 = 1, … ,𝑘𝑘. MVTDs are expressed as follows: 

𝑿𝑿𝑖𝑖|𝑊𝑊𝑖𝑖 ,𝑍𝑍𝑖𝑖𝑗𝑗 = 1~𝜙𝜙(𝑇𝑇×𝑝𝑝)�𝑴𝑴𝑖𝑖 ,𝑊𝑊𝑖𝑖
−1𝜱𝜱𝑖𝑖 ,𝜴𝜴𝑖𝑖  �,       𝑊𝑊𝑖𝑖|𝑍𝑍𝑖𝑖𝑗𝑗 = 1~ 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎 �𝑣𝑣𝑖𝑖

2
, 𝑣𝑣𝑖𝑖
2
�. (2) 

Based on the hierarchical representation of the MVTDs, the complete data log-likelihood ℓ𝑐𝑐(𝜗𝜗) can be written as follows: 

ℓ𝑐𝑐(𝜗𝜗) =  ��𝑍𝑍𝑖𝑖𝑗𝑗 �−
𝑇𝑇𝑝𝑝
2
𝑙𝑙𝑙𝑙𝑙𝑙 2𝜋𝜋 −

𝑝𝑝
2
𝑙𝑙𝑙𝑙𝑙𝑙|𝑢𝑢𝑖𝑖−1𝜱𝜱𝑖𝑖|−

𝑇𝑇
2
𝑙𝑙𝑙𝑙𝑙𝑙|𝜴𝜴𝑖𝑖| −

𝑊𝑊𝑖𝑖

2
𝑀𝑀𝑡𝑡�𝛀𝛀𝑖𝑖

−1�𝑿𝑿𝑖𝑖 − 𝑴𝑴𝑖𝑖�𝜱𝜱𝑖𝑖
−1�𝑿𝑿𝑖𝑖 − 𝑴𝑴𝑖𝑖�

′� +
𝑣𝑣𝑖𝑖
2
𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑣𝑣𝑖𝑖
2
�

𝑘𝑘

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

− 𝑙𝑙𝑙𝑙𝑙𝑙 𝛤𝛤 �
𝑣𝑣𝑖𝑖
2
� −

𝑣𝑣𝑖𝑖
2
𝑊𝑊𝑖𝑖  + �

𝑣𝑣𝑖𝑖
2
− 1� 𝑙𝑙𝑙𝑙𝑙𝑙�𝑊𝑊𝑖𝑖�� + ��𝑍𝑍𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 . 

(3) 

An EM algorithm is as follows: 
I. Initialization: Initialize parameters πi, 𝐌𝐌𝑖𝑖, 𝚽𝚽i, 𝛀𝛀i, and 𝑣𝑣𝑖𝑖, setting 𝑀𝑀 = 0. 
II. E-step: Update E�Zij|𝐗𝐗j,𝜗𝜗�, E�𝑊𝑊𝑖𝑖|𝑿𝑿𝒋𝒋, Zij = 1;𝜗𝜗�, and E�log𝑊𝑊𝑖𝑖 |𝑿𝑿𝒋𝒋, Zij = 1;𝜗𝜗�, where 

𝐸𝐸�𝑍𝑍𝑖𝑖𝑖𝑖|𝑿𝑿𝒋𝒋,𝜗𝜗(𝑡𝑡)� = 𝑃𝑃�𝑍𝑍𝑖𝑖𝑖𝑖 = 1|𝑿𝑿𝒋𝒋,𝜗𝜗(𝑡𝑡)� =
𝜋𝜋𝑖𝑖

(𝑡𝑡)𝑀𝑀𝑀𝑀𝑇𝑇×𝑝𝑝�𝑿𝑿𝑖𝑖 ;  𝑴𝑴𝑖𝑖
(𝑡𝑡),𝜱𝜱𝑖𝑖

(𝑡𝑡),𝜴𝜴𝑖𝑖
(𝑡𝑡), 𝑣𝑣𝑖𝑖

(𝑡𝑡)� 
∑ 𝜋𝜋𝑖𝑖

(𝑡𝑡)𝑀𝑀𝑀𝑀𝑇𝑇×𝑝𝑝�𝑿𝑿𝑖𝑖;  𝑴𝑴𝑖𝑖
(𝑡𝑡),𝜱𝜱𝒊𝒊

(𝑡𝑡),𝜴𝜴𝑖𝑖
(𝑡𝑡), 𝑣𝑣𝑖𝑖

(𝑡𝑡)�𝑘𝑘
𝑖𝑖=1

= 𝜏𝜏𝑖𝑖𝑖𝑖
(𝑡𝑡), 

𝐸𝐸�𝑊𝑊𝑖𝑖|𝑿𝑿𝒋𝒋,𝑍𝑍𝑖𝑖𝑖𝑖 = 1;𝜗𝜗(𝑡𝑡)� =
𝑇𝑇𝑝𝑝 + 𝑣𝑣�𝑖𝑖

(𝑡𝑡)

𝑀𝑀𝑡𝑡 �𝜴𝜴𝑖𝑖
(𝑡𝑡)−1�𝑿𝑿𝑖𝑖 − 𝑴𝑴𝑖𝑖

(𝑡𝑡)�
′
𝜱𝜱𝑖𝑖

(𝑡𝑡)−1�𝑿𝑿𝑖𝑖 − 𝑴𝑴𝑖𝑖
(𝑡𝑡)�� + 𝑣𝑣𝑖𝑖

(𝑡𝑡)
= 𝑊𝑊1𝑖𝑖𝑖𝑖

(𝑡𝑡), 

�𝑙𝑙𝑙𝑙𝑙𝑙𝑊𝑊𝑖𝑖 |𝑿𝑿𝒋𝒋,𝑍𝑍𝑖𝑖𝑖𝑖 = 1;𝜗𝜗(𝑡𝑡)� = 𝐷𝐷𝐺𝐺 �
𝑇𝑇𝑝𝑝 + 𝑣𝑣𝑖𝑖

(𝑡𝑡)

2
� + 𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑀𝑀𝑡𝑡 �𝜴𝜴𝑖𝑖
(𝑡𝑡)−1�𝑿𝑿𝑖𝑖 − 𝑴𝑴𝑖𝑖

(𝑡𝑡)�
′
𝜱𝜱𝑖𝑖

(𝑡𝑡)−1�𝑿𝑿𝑖𝑖 − 𝑴𝑴𝑖𝑖
(𝑡𝑡)�� + 𝑣𝑣𝑖𝑖

(𝑡𝑡)

2
� =𝑊𝑊2𝑖𝑖𝑖𝑖

(𝑡𝑡), 

(4) 
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where 𝐷𝐷𝐺𝐺(𝑀𝑀) = 𝑑𝑑
𝑑𝑑𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙 𝛤𝛤(𝑇𝑇) represents the digamma function. Furthermore, 𝑊𝑊1𝑖𝑖𝑖𝑖

(𝑡𝑡)is calculated based on 𝑊𝑊𝑖𝑖|𝑿𝑿𝒋𝒋,𝑍𝑍𝑖𝑖𝑖𝑖 = 1 

distribution, which has a gamma distribution with parameters 𝑇𝑇𝑝𝑝+𝑣𝑣�𝑖𝑖
(𝑡𝑡)

2
 and 

𝑡𝑡𝑡𝑡�𝜴𝜴𝑖𝑖
(𝑡𝑡)−1�𝑿𝑿𝑗𝑗−𝑴𝑴𝑖𝑖

(𝑡𝑡)�
′
𝜱𝜱𝑖𝑖

(𝑡𝑡)−1�𝑿𝑿𝑗𝑗−𝑴𝑴𝑖𝑖
(𝑡𝑡)��+𝑣𝑣𝑖𝑖

(𝑡𝑡)

2
, and 𝑊𝑊2𝑖𝑖𝑖𝑖

(𝑡𝑡) is 
achieved using the moment-generating function of 𝑊𝑊𝑖𝑖|𝑿𝑿𝒋𝒋,𝑍𝑍𝑖𝑖𝑖𝑖 = 1. 

III.  M-step: Update 𝜋𝜋𝑖𝑖, 𝑴𝑴𝑖𝑖, 𝜴𝜴𝑖𝑖, 𝚽𝚽𝑖𝑖, and 𝑣𝑣𝑖𝑖. The order of parameter estimation is as follows (1): 𝜋𝜋𝑖𝑖 and 𝑴𝑴𝑖𝑖; (2) 𝜴𝜴𝑖𝑖; 
(3) 𝚽𝚽𝑖𝑖; (4) 𝑣𝑣𝑖𝑖 

1. Update 𝜋𝜋𝑖𝑖 and 𝑴𝑴𝑖𝑖:                           𝜋𝜋𝑖𝑖
(𝑡𝑡+1) =

∑ 𝜏𝜏𝑖𝑖𝑗𝑗
(𝑡𝑡)𝑛𝑛

𝑗𝑗=1

𝑛𝑛
,       𝑴𝑴𝑖𝑖

(𝑡𝑡+1) =
∑ 𝜏𝜏𝑖𝑖𝑗𝑗

(𝑡𝑡)𝑊𝑊1𝑖𝑖𝑗𝑗
(𝑡𝑡)𝑿𝑿𝑗𝑗

𝑛𝑛
𝑗𝑗=1

∑ 𝜏𝜏𝑖𝑖𝑗𝑗
(𝑡𝑡)𝑊𝑊1𝑖𝑖𝑗𝑗

(𝑡𝑡) 𝑛𝑛
𝑗𝑗=1

, (5) 

2. Update 𝜴𝜴𝑖𝑖  

Assuming that 𝑩𝑩𝑖𝑖 = ∑ 𝜏𝜏𝑖𝑖𝑖𝑖
(𝑡𝑡)𝑊𝑊1𝑖𝑖𝑖𝑖

(𝑡𝑡)�𝑿𝑿𝑖𝑖 − 𝑴𝑴𝑖𝑖
(𝑡𝑡+1)�

′
𝚽𝚽𝑖𝑖

(𝑡𝑡)−1�𝑿𝑿𝑖𝑖 − 𝑴𝑴𝑖𝑖
(𝑡𝑡+1)�𝑛𝑛

𝑖𝑖=1 , the ℓ𝑐𝑐(𝜗𝜗) is proportional to −𝑇𝑇
2
∑ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙|𝜴𝜴𝑖𝑖| −𝑘𝑘
𝑖𝑖=1

1
2
∑ 𝑀𝑀𝑡𝑡{𝛀𝛀𝑖𝑖

−1𝑩𝑩𝑖𝑖}𝑘𝑘
𝑖𝑖=1  with 𝑛𝑛𝑖𝑖 = ∑ 𝜏𝜏𝑖𝑖𝑖𝑖

(𝑡𝑡)𝑛𝑛
𝑖𝑖=1 . The estimates o parameters for the eight sub-models are provided below. 

• Sub-model VVV: The maximization of −𝑇𝑇
2
∑ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙|𝜴𝜴𝑖𝑖| −

1
2
∑ 𝑀𝑀𝑡𝑡{𝛀𝛀𝑖𝑖

−1𝑩𝑩𝑖𝑖}𝑘𝑘
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1  with respect to 𝜴𝜴𝑖𝑖 leads to 𝜴𝜴𝑖𝑖

(𝑡𝑡+1) = 𝑩𝑩𝑖𝑖
𝑛𝑛𝑖𝑖𝑇𝑇

; 

• Sub-model EEE: The maximization of −𝑇𝑇𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙|𝜴𝜴|∑ −1

2
𝑀𝑀𝑡𝑡�𝛀𝛀𝑖𝑖

−1 ∑ 𝑩𝑩𝑖𝑖
𝑘𝑘
𝑖𝑖=1 �𝑘𝑘

𝑖𝑖=1 , where 𝑛𝑛 = ∑ ∑ 𝜏𝜏𝑖𝑖𝑖𝑖
(𝑡𝑡)𝑛𝑛

𝑖𝑖=1
𝑘𝑘
𝑖𝑖=1 , with respect 

to 𝜴𝜴𝑖𝑖 = 𝜴𝜴 leads to 𝜴𝜴(𝑡𝑡+1) = ∑ 𝑩𝑩𝑖𝑖𝑘𝑘
𝑖𝑖=1
𝑛𝑛𝑇𝑇

 ; 

• Sub-model VVI: The maximization of −𝑇𝑇𝑝𝑝
2
∑ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 𝜆𝜆𝑖𝑖 −

1
2
∑ 1

𝜆𝜆𝑖𝑖
𝑀𝑀𝑡𝑡{𝐀𝐀𝑖𝑖−1𝑩𝑩𝑖𝑖}𝑘𝑘

𝑖𝑖=1
𝑘𝑘
𝑖𝑖=1  with respect to 𝜴𝜴𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑫𝑫𝑨𝑨𝒊𝒊𝑫𝑫′ leads to 

𝜆𝜆𝑖𝑖
(𝑡𝑡+1) = |𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑(𝑩𝑩𝑖𝑖)|

1
𝑝𝑝

 𝑇𝑇𝑛𝑛𝑖𝑖
 and 𝑨𝑨𝑖𝑖

(𝑡𝑡+1) = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑(𝑩𝑩𝑖𝑖)

|𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑(𝑩𝑩𝑖𝑖)|
1
𝑝𝑝
; 

• Sub-model EEI: The maximization of −𝑝𝑝𝑇𝑇
2
∑ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙|𝜴𝜴𝑖𝑖| −

1
2
∑ 𝑀𝑀𝑡𝑡{𝛀𝛀𝑖𝑖

−1𝑩𝑩𝑖𝑖}𝑘𝑘
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1  with respect to 𝜴𝜴𝑖𝑖 leads to 𝜆𝜆(𝑡𝑡+1) =

�𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑�∑ 𝑩𝑩𝑖𝑖
𝑘𝑘
𝑖𝑖=1 ��

1
𝑝𝑝

 𝑇𝑇𝑛𝑛
and 𝑨𝑨(𝑡𝑡+1) =

𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑�∑ 𝑩𝑩𝑖𝑖
𝑘𝑘
𝑖𝑖=1 �

�𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑�∑ 𝑩𝑩𝑖𝑖
𝑘𝑘
𝑖𝑖=1 ��

1
𝑝𝑝
; 

• Sub-model VII: The maximization of −𝑝𝑝𝑇𝑇
2
∑ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 𝜆𝜆𝑖𝑖 −

1
2
∑ 𝑀𝑀𝑡𝑡 �𝑩𝑩𝑖𝑖

𝜆𝜆𝑖𝑖
�𝑘𝑘

𝑖𝑖=1
𝑘𝑘
𝑖𝑖=1  with respect to 𝜴𝜴𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑰𝑰 leads to 𝜆𝜆𝑖𝑖

(𝑡𝑡+1) = 𝑡𝑡𝑡𝑡{𝑩𝑩𝑖𝑖}
 𝑇𝑇𝑝𝑝𝑛𝑛𝑖𝑖

; 

• Sub-model EII: The maximization of −𝑇𝑇𝑝𝑝𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙 𝜆𝜆 − 1

2𝜆𝜆
𝑀𝑀𝑡𝑡�∑ 𝑩𝑩𝑖𝑖

𝑘𝑘
𝑖𝑖=1 � with respect to 𝜴𝜴 = 𝜆𝜆𝑰𝑰 leads to 𝜆𝜆(𝑡𝑡+1) =

𝑡𝑡𝑡𝑡�∑ 𝑩𝑩𝑖𝑖
𝑘𝑘
𝑖𝑖=1 �

 𝑇𝑇𝑝𝑝𝑛𝑛
; 

• Sub-model EEV: The maximization of −𝑇𝑇𝑝𝑝𝑛𝑛
2
𝑙𝑙𝑙𝑙𝑙𝑙 𝜆𝜆 − 1

2𝜆𝜆
∑ 𝑀𝑀𝑡𝑡{𝑫𝑫𝑖𝑖𝐴𝐴−1𝑫𝑫𝑖𝑖

′𝑩𝑩𝑖𝑖}𝑘𝑘
𝑖𝑖=1  with respect to 𝜴𝜴𝑖𝑖 = 𝜆𝜆𝑫𝑫𝑖𝑖𝑨𝑨𝑫𝑫𝑖𝑖

′ leads to 

𝜆𝜆(𝑡𝑡+1) =
�∑ 𝑪𝑪𝑖𝑖
𝑘𝑘
𝑖𝑖=1 �

1
𝑝𝑝

𝑛𝑛 𝑇𝑇
, 𝐴𝐴(𝑡𝑡+1) = ∑ 𝑪𝑪𝑖𝑖

𝑘𝑘
𝑖𝑖=1

�∑ 𝑪𝑪𝑖𝑖
𝑘𝑘
𝑖𝑖=1 �

1
𝑝𝑝

,𝑫𝑫𝑖𝑖
(𝑡𝑡+1) = 𝑳𝑳𝑖𝑖, where for 𝑖𝑖 = 1, … ,𝑘𝑘 𝑪𝑪𝑖𝑖, and 𝑳𝑳𝑖𝑖 are derived from the eigenvalue 

decomposition of the symmetric positive definite matrix  𝑩𝑩𝑖𝑖 = 𝑳𝑳𝑖𝑖𝑪𝑪𝑖𝑖𝑳𝑳𝑖𝑖′ with the eigenvalues in the diagonal matrix 𝐂𝐂i 
in descending order. 

• Sub-model III: This situation equals the independence of the responses thus no parameters are available. 
3. Update 𝜱𝜱𝑖𝑖 

Considering that 𝑺𝑺(𝑖𝑖) = ∑ 𝜏𝜏𝑖𝑖𝑖𝑖
(𝑡𝑡) 𝑊𝑊1𝑖𝑖𝑖𝑖

(𝑡𝑡) �𝑿𝑿𝑖𝑖 − 𝑴𝑴� 𝑖𝑖
(𝑡𝑡+1)� 𝜴𝜴𝑖𝑖

(𝑡𝑡+1)−1 �𝑿𝑿𝑖𝑖 −𝑴𝑴� 𝑖𝑖
(𝑡𝑡+1)�

′𝑛𝑛
𝑖𝑖=1 , ℓ𝑐𝑐(𝜗𝜗) is proportional to 

−𝑝𝑝
2
∑ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙|𝑫𝑫𝑖𝑖| −

1
2
𝑀𝑀𝑡𝑡�∑ (𝑼𝑼𝑖𝑖

′𝑻𝑻𝑖𝑖−1𝑼𝑼𝑖𝑖)𝑺𝑺(𝑖𝑖)𝑘𝑘
𝑖𝑖=1 �𝑘𝑘

𝑖𝑖=1 . The estimates of parameters for the four sub-models are presented as follows: 

• Sub-model GAR(m): The maximization of − 𝑝𝑝
2
∑ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙|𝑫𝑫𝑖𝑖| −

1
2
𝑀𝑀𝑡𝑡�∑ (𝑼𝑼𝑖𝑖

′𝑻𝑻𝑖𝑖−1𝑼𝑼𝑖𝑖)𝑺𝑺(𝑖𝑖)𝑘𝑘
𝑖𝑖=1 �𝑘𝑘

𝑖𝑖=1  with respect to 𝜱𝜱𝑖𝑖 leads to the 
rth row estimation of matrix 𝑼𝑼𝑖𝑖 as 
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⎝

⎜
⎛
𝜙𝜙𝑡𝑡,𝑡𝑡−𝑚𝑚

(𝑖𝑖)

𝜙𝜙𝑡𝑡,𝑡𝑡−𝑚𝑚+1
(𝑖𝑖)

⋯
𝜙𝜙𝑡𝑡,𝑡𝑡−1

(𝑖𝑖)
⎠

⎟
⎞

(𝒕𝒕+𝟏𝟏)

=

⎝

⎜
⎛
𝑆𝑆𝑡𝑡−𝑚𝑚,𝑡𝑡−𝑚𝑚

(𝑖𝑖) 𝑆𝑆𝑡𝑡−𝑚𝑚+1,𝑡𝑡−𝑚𝑚
(𝑖𝑖) ⋯ 𝑆𝑆𝑡𝑡−1,𝑡𝑡−𝑚𝑚

(𝑖𝑖)

𝑆𝑆𝑡𝑡−𝑚𝑚,𝑡𝑡−𝑚𝑚+1
(𝑖𝑖) 𝑆𝑆𝑡𝑡−𝑚𝑚+1,𝑡𝑡−𝑚𝑚+1

(𝑖𝑖) ⋯ 𝑆𝑆𝑡𝑡−1,𝑡𝑡−𝑚𝑚+1
(𝑖𝑖)

⋯ ⋯ ⋱ ⋮
𝑆𝑆𝑡𝑡−𝑚𝑚,𝑡𝑡−1

(𝑖𝑖) 𝑆𝑆𝑡𝑡−𝑚𝑚+1,𝑡𝑡−1
(𝑖𝑖) ⋯ 𝑆𝑆𝑡𝑡−1,𝑡𝑡−1

(𝑖𝑖)
⎠

⎟
⎞

−1

⎝

⎜
⎛
𝑆𝑆𝑡𝑡,𝑡𝑡−𝑚𝑚

(𝑖𝑖)

𝑆𝑆𝑡𝑡,𝑡𝑡−𝑚𝑚+1
(𝑖𝑖)

⋯
𝑆𝑆𝑡𝑡,𝑡𝑡−1

(𝑖𝑖)
⎠

⎟
⎞

, (6) 

 

and matrix 𝑻𝑻𝑖𝑖
(𝑡𝑡+1) = 1

𝑝𝑝
𝑑𝑑𝑖𝑖𝑎𝑎𝑙𝑙 �𝑼𝑼𝑖𝑖

(𝑡𝑡+1)𝑺𝑺(𝑖𝑖)𝑼𝑼𝑖𝑖
(𝑡𝑡+1)′�, where r = 2, … ,𝑇𝑇, 𝑚𝑚 = 0 , … ,𝑇𝑇 − 1, and Sl,t

(i) is the lth-row and rth-column 
element of matrix 𝐒𝐒(i). 

• Sub-model GARI(m): The maximization of −𝑇𝑇𝑝𝑝
2
∑ 𝑛𝑛𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙|𝑑𝑑𝑖𝑖| −

1
2
𝑀𝑀𝑡𝑡 �∑ 1

𝑑𝑑𝑖𝑖
𝑼𝑼𝑖𝑖
′𝑼𝑼𝑖𝑖𝑺𝑺(𝑖𝑖)𝑘𝑘

𝑖𝑖=1 �𝑘𝑘
𝑖𝑖=1  with respect to 𝜱𝜱𝑖𝑖 = 1

𝑑𝑑𝑖𝑖
𝑼𝑼𝑖𝑖
′𝑼𝑼𝑖𝑖 

leads to the same estimate of 𝑼𝑼𝑖𝑖 as sub-model GAR(m) and estimate 𝑑𝑑𝑖𝑖
(𝑡𝑡+1) =

𝑡𝑡𝑡𝑡 �𝑼𝑼𝑖𝑖
(𝑡𝑡+1)𝑺𝑺(𝑖𝑖)𝑼𝑼𝑖𝑖

(𝑡𝑡+1)′�

𝑛𝑛𝑖𝑖𝑝𝑝𝑇𝑇
. 

• Sub-model EGAR(m): The maximization of − 𝑛𝑛𝑝𝑝
2
𝑙𝑙𝑙𝑙𝑙𝑙|𝑫𝑫| − 1

2
𝑀𝑀𝑡𝑡�𝑼𝑼′𝑻𝑻−1𝑼𝑼�∑ 𝑺𝑺(𝑖𝑖)𝑘𝑘

𝑖𝑖=1 �� with respect to 𝜱𝜱𝑖𝑖 = 𝜱𝜱 leads to 
the same estimate of 𝑼𝑼 as sub-model GAR(m) by replacing ∑ 𝑺𝑺(𝑖𝑖)𝑘𝑘

𝑖𝑖=1 instead of 𝑺𝑺(𝑖𝑖) and estimate 𝑻𝑻(𝑡𝑡+1) =
1
𝑛𝑛𝑝𝑝
𝑑𝑑𝑖𝑖𝑎𝑎𝑙𝑙�𝑼𝑼(𝑡𝑡+1)�∑ 𝑺𝑺(𝑖𝑖)𝑘𝑘

𝑖𝑖=1 �𝑼𝑼(𝑡𝑡+1)′�. 
• Sub-model EGARI(m): The maximization of −𝑛𝑛𝑝𝑝𝑇𝑇

2
𝑙𝑙𝑙𝑙𝑙𝑙|𝑑𝑑| − 1

2𝑑𝑑
𝑀𝑀𝑡𝑡�𝑼𝑼′𝑼𝑼�∑ 𝑺𝑺(𝑖𝑖)𝑘𝑘

𝑖𝑖=1 �� with respect to 𝜱𝜱𝑖𝑖 = 𝜱𝜱 leads to the 

same estimate of 𝑼𝑼 as sub-model EGAR(m) and estimate 𝑑𝑑(𝑡𝑡+1) =
 𝑡𝑡𝑡𝑡 �𝑼𝑼(𝑡𝑡+1)′𝑼𝑼(𝑡𝑡+1) ∑ 𝑺𝑺(𝑖𝑖)𝑘𝑘

𝑖𝑖=1 �

𝑝𝑝𝑛𝑛𝑇𝑇
. 

4. Update 𝑣𝑣𝑖𝑖 
For the degree of freedom, two situations were considered, including equal and unequal 𝑣𝑣𝑖𝑖 across mixture components 

(constrained and unconstrained 𝑣𝑣𝑖𝑖 , respectively). Given 𝜏𝜏𝑖𝑖𝑖𝑖
(𝑡𝑡+1), 𝜋𝜋𝑖𝑖

(𝑡𝑡+1), 𝑴𝑴𝑖𝑖
(𝑡𝑡+1), 𝜴𝜴𝑖𝑖

(𝑡𝑡+1), and 𝚽𝚽𝑖𝑖
(𝑡𝑡+1), the estimations of 𝑣𝑣𝑖𝑖 are 

calculated by finding the root of equations (8) and (9) in constrained and unconstrained situations, respectively. 
 

1 + 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑣𝑣
2
� − 𝐷𝐷𝐺𝐺 �𝛤𝛤 �

𝑣𝑣
2
�� +

1
𝑛𝑛
��𝜏𝜏𝑖𝑖𝑖𝑖

(𝑡𝑡+1)�𝑊𝑊2𝑖𝑖𝑖𝑖
(𝑡𝑡+1) −𝑊𝑊1𝑖𝑖𝑖𝑖

(𝑡𝑡+1)�
𝑘𝑘𝑛𝑛

=  0, (7) 

1 + 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑣𝑣𝑖𝑖
2
� − 𝐷𝐷𝐺𝐺 �𝛤𝛤 �

𝑣𝑣𝑖𝑖
2
�� +

1
𝑛𝑛𝑖𝑖
�𝜏𝜏𝑖𝑖𝑖𝑖

(𝑡𝑡+1)�𝑊𝑊2𝑖𝑖𝑖𝑖
(𝑡𝑡+1) −𝑊𝑊1𝑖𝑖𝑖𝑖

(𝑡𝑡+1)�
𝑛𝑛

𝑖𝑖 1

=  0. (8) 

  

IV.  Check the convergence criterion: If not satisfied, set 𝑀𝑀 = 𝑀𝑀 + 1 and go to step II of the EM algorithm iteration. 
 

2.3 Model selection and convergence criterion 
It is possible to define a large family (64 × 𝑇𝑇 ) of possible mixture models by allowing different sub-models for covariance 
matrices 𝜴𝜴𝑖𝑖 and 𝚽𝚽𝑖𝑖 with different orders for matrix 𝑻𝑻𝑖𝑖, 𝑚𝑚 = 0,1, . . ,𝑇𝑇 − 1, and constrained/unconstrained for 𝑣𝑣𝑖𝑖. The model 
can be selected according to the Bayesian information criterion (BIC) as 𝐵𝐵𝐼𝐼𝐵𝐵 = 2 𝑙𝑙�𝑥𝑥, �̂�𝜗� − ℎ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛, where 𝑙𝑙�𝑥𝑥, �̂�𝜗� and �̂�𝜗 
indicate the maximized log-likelihood and the maximum likelihood estimate of 𝝑𝝑, respectively. Additionally, ℎ and n are the 
number of free parameters in the model and the number of observations, respectively [30]. Other criteria are employed in 
addition to BIC to estimate the number of mixture components, such as Integrated Completed Likelihood (ICL), which is 
computed as ICL ≈ BIC − 2∑ ∑ MAP1�𝜏𝜏𝑖𝑖𝑖𝑖

(𝑡𝑡)�k
i=1

n
j=1 log 𝜏𝜏𝑖𝑖𝑖𝑖

(𝑡𝑡), where MAP �𝜏𝜏𝑖𝑖𝑖𝑖
(𝑡𝑡)� = 1 if the 𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖=1,…,𝑘𝑘 �𝜏𝜏𝑖𝑖𝑖𝑖

(𝑡𝑡)� = 𝑖𝑖, otherwise, 

MAP �𝜏𝜏𝑖𝑖𝑖𝑖
(𝑡𝑡)� = 0, 𝑗𝑗 = 1 , … ,𝑛𝑛 and 𝑖𝑖 = 1, … , 𝑘𝑘 [31]. 

                                                 
1 Maximum A Posteriori probability (MAP)  
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In general, 20 random multistate points were considered given that the starting values of the EM algorithm could affect 
the estimated parameters. If the convergence criterion �𝑙𝑙�𝑥𝑥, �̂�𝜗(𝑡𝑡+1)� − 𝑙𝑙�𝑥𝑥, �̂�𝜗(𝑡𝑡)�� < 1.0𝑒𝑒 − 5 is met, the EM algorithm is 
stopped, and the range of values for 𝑣𝑣�𝑖𝑖 is limited to between 2 and 200 [22]. These models have been written in R software. 

 

3 Results: Simulation studies and real data 
3.1 Simulation 1 

The first simulation study was conducted to evaluate the ability of the algorithm for recognizing the temporal structure. 
The features of simulation study 1 were: a number k of mixture components equal to 3, a k-vector of the degrees of freedom 
equal to 5, 5, 5, and a 4 × 4 within covariance matrix 𝛀𝛀i with a structure equals to VVV. In addition, other features included 
a 6 × 6 temporal covariance matrix 𝚽𝚽i with a structure equals to GAR(1) and GAR(3), and a sample size n equals 100, 200, 
500, and 1000. For each setting, 100 datasets were generated from the mixture of the MVTDs based on the defined within 
and temporal covariance matrices. Then, the mixture of MVTDs and MVNDs was run for five different models according 
to different orders for 𝚽𝚽i: GAR(1), GAR(2), GAR(3), GAR(4), and GAR(5). The best model was chosen according to the 
BIC and ICL. The percentage (number) of correct model selection with MVTD is equal to 100 in all cases, and it ranges 
from 97 to 100 for MVNDs. In a situation with a true model GAR(3), this percentage varied from 99 to 100 and 93 to 99 for 
MVTD and MVND, respectively. 

 

3.2 Simulation 2 
It was performed to evaluate the ability of MVTDs to recover the MVNDs in multivariate longitudinal data. To this end, 

datasets were generated from two-component (k=2), matrix-variate mixture models. The MVND and MVTD were the first 
and second components, respectively, and the same covariance structures with different parameter values were used 
accordingly. Other features (i.e., 𝛀𝛀i, 𝚽𝚽i, and sample size) in this simulation are similar to the first simulation study. For each 
setting, 100 datasets were generated from mixture distributions based on the defined within and temporal covariance matrices. 
Further, the mixture of MVTDs and MVNDs was run for five different models of GAR(1), GAR(2), GAR(3), GAR(4), and 
GAR(5). Table 5 presents the average values of the degree of freedom (standard deviation) of a model with GAR(1) and 
GAR(3) structures for 𝚽𝚽i. Given k (=2) and 𝛀𝛀𝑖𝑖 (VVV), the estimated degrees of freedom demonstrated that the first 
component was normal. Furthermore, the degrees of freedom estimates were computed to be close to true values in MVTD 
mixture models. 

Additionally, the misclassification error rate (MISC) and the measure of accuracy (𝛾𝛾) for mean and covariance matrices 
were computed for each dataset and model in order to compare the two models in parameter estimates. Therefore, the 
accuracy measures of 𝑴𝑴, 𝜴𝜴 (=VVV), 𝑼𝑼, and 𝑻𝑻 (=GAR) were calculated by the following expressions [32]: 

 

𝛾𝛾𝑴𝑴 =
∑ �𝑴𝑴� 𝑖𝑖 − 𝑴𝑴𝑖𝑖�𝑘𝑘
𝑖𝑖=1

𝑘𝑘𝑇𝑇𝑝𝑝
, 𝛾𝛾𝜴𝜴 =

∑ �𝜴𝜴�𝑖𝑖 − 𝜴𝜴𝑖𝑖�𝑘𝑘
𝑖𝑖=1

𝑘𝑘𝑝𝑝(𝑝𝑝 + 1)
2

𝛾𝛾𝑼𝑼 =
∑ �𝑼𝑼�𝑖𝑖 − 𝑼𝑼𝑖𝑖�𝑘𝑘
𝑖𝑖=1

𝑘𝑘𝑘𝑘
, 𝛾𝛾𝑻𝑻 =

∑ �𝑻𝑻�𝑖𝑖 − 𝑻𝑻𝑖𝑖�𝑘𝑘
𝑖𝑖=1

𝑘𝑘𝑇𝑇
 (9) 

 
where the lower accuracy measure (𝛾𝛾) implies higher accuracy for parameters. 

Considering k (=2) and 𝛀𝛀𝑖𝑖 (VVV), 𝛾𝛾𝑴𝑴, 𝛾𝛾𝛀𝛀, and 𝛾𝛾𝑻𝑻 were not sensitive to the misspecification of the order of the temporal 
covariance (m=1, 2, …, 5), and these values were nearly identical in MVTD and MVND mixture models. However, the 
values of 𝛾𝛾𝑻𝑻 relied on the misspecification of the temporal covariance order. In the two models, 𝛾𝛾𝑻𝑻 of the lower orders (𝑚𝑚 =
1, 2) was larger compared to the higher orders (𝑚𝑚 = 3, 4, 5). It should be noted that MVND mixture models tend to 
overestimate 𝛾𝛾𝑻𝑻compared to MVTD mixture models. Eventually, the accuracy measures in both models decreased by an 
increase in the sample size (Table 1). The mean compute time for fitting the mixture of MVTDs vs as MVNDs with the true 
model GAR(3) was 6.66 vs. 0.37 for n=100, 10.17 vs. 0.62 for n=200, 23.44 vs. 1.30 for n=500, and 46.86 vs 2.59 for 
n=1000. 
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Table 1: Mean (S.D) of MISC and accuracy measures with GAR(3) structure for 𝚽𝚽ifrom simulation 2 

  𝜱𝜱𝑖𝑖 

n 

 GAR(1) GAR(2) GAR(3) GAR(4) GAR(5) 

 MVTD MVND MVTD MVND MVTD MVND MVTD MVND MVTD MVND 

200 

MISC 0 0.0001(0.001) 0 0.0001(0.001) 0 0.0001(0.001) 0 0.0001(0.001) 0 0.0001(0.001) 

𝛾𝛾𝑴𝑴 0.09 (0.01) 0.10 (0.01) 0.09 (0.01) 0.10 (0.01) 0.09 (0.01) 0.10 (0.01) 0.09 (0.01) 0.10 (0.01) 0.09 (0.01) 0.10 (0.01) 

𝛾𝛾𝛀𝛀 0.23 (0.002) 0.23 (0.003) 0.23 (0.001) 0.23 (0.002) 0.23 (0.001) 0.23 (0.001) 0.23 (0.001) 0.23 (0.001) 0.23 (0.001) 0.23 (0.001) 

𝛾𝛾𝐓𝐓 0.49 (0.02) 0.57 (0.06) 0.44 (0.02) 0.52 (0.13) 0.40 (0.02) 0.48 (0.14) 0.40 (0.02) 0.48 (0.14) 0.40 (0.02) 0.48 (0.14) 

𝛾𝛾𝐔𝐔 0.33 (0.002) 0.33 (0.002) 0.20 (0.01) 0.20 (0.02) 0.10 (0.02) 0.11 (0.03) 0.15 (0.04) 0.17 (0.05) 0.18 (0.04) 0.21 (0.06) 

1000 

MISC 0 0 0 0 0 0 0 0 0 0 

𝛾𝛾𝑴𝑴 0.06 (0.01) 0.07 (0.01) 0.06 (0.01) 0.07 (0.01) 0.06 (0.01) 0.07 (0.01) 0.06 (0.01) 0.07 (0.01) 0.06 (0.01) 0.07 (0.01) 

𝛾𝛾𝛀𝛀 0.15(0.0002) 0.15 (0.0002) 0.15(0.0002) 0.15 (0.0002) 0.15(0.0002) 0.15 (0.0002) 0.15(0.0002) 0.15 (0.0002) 0.15(0.0002) 0.15 (0.0002) 

𝛾𝛾𝐓𝐓 0.31 (0.01) 0.42 (0.03) 0.27 (0.01) 0.40 (0.02) 0.27 (0.01) 0.37 (0.02) 0.27 (0.01) 0.37 (0.02) 0.27 (0.01) 0.37 (0.02) 

𝛾𝛾𝐔𝐔 0.28 (0.001) 0.28 (0.001) 0.17 (0.001) 0.20 (0.001) 0.05 (0.001) 0.06 (0.01) 0.05 (0.001) 0.06 (0.01) 0.05 (0.001) 0.06 (0.01) 

3.3 Simulation 3 
The ability of MVTD and the MVND mixture models was evaluated regarding recognizing the true number of mixture 

components when the data were generated from MVTD mixture models. Then, the impact of the misspecification of the 
temporal matrix on the estimation of the number of components was investigated as well. For each setting, 100 datasets were 
generated from the model with a GAR(3) structure. In addition, a different number of mixture components (k = 2, 3, and 4) 
was considered to evaluate the choice of k. Approximately the correct number of components (k=3) was selected for MVTDs 
in all cases. However, MVNDs tend to overestimate (k=4) the number of true components. 

 

3.4 Real data: Gastrointestinal (GI) cancers  
The age-standardized death rates of the three most common GI cancers were extracted from the Our World In Data 

website [33]. The information included the death rates (per 100,000 populations) of colon and rectum, stomach, and liver 
cancers in 186 countries during 1990-2015 (at 5-year intervals). A mixture of MVTDs and MVNDs was fitted with k ranging 
from 1 to 10. The best sub-model based on the BIC and ICL is (GAR(2), VVV) with k=7 in the mixture of MVNDs and 
(GAR(4), VVV) with the constrained degrees of freedom and k=6 in the mixture of MVTDs. The estimated degree of 
freedom for the mixture of the MVTDs was 𝑣𝑣� = 3.33. We also fitted a finite mixture of skew matrix-variate distributions 
introduced by Gallaugher and McNicholas [15] to GI data. These matrix-variate distributions are skew-t, generalized 
hyperbolic, variance-gamma, and normal inverse Gaussian distributions that we did not consider eigenvalue and 
the modified Cholesky decompositions for the between and within covariance matrices for those, respectively. 
Because of the huge number of parameters, any of these finite mixture had not been converge. 

Further, stomach and liver cancer death rates in some countries were extremely higher compared to other countries. 
Thus, the mixture of the MVND model provided an additional cluster to allow outliers. For more details, the number of 
countries in each cluster and the maps of the included countries in each cluster of MVTD model is presented in Figure 1. 
The obtained cluster labels in the two models were the same for 132 countries. 
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Figure 1: Trend of countries based on the death rates of the three common GI cancer resulted from the mixture of the MVTDs 
 
Conclusion 

Based on 𝛾𝛾 in the mixture models of MVTD and MVND, no differences were observed between the estimation of 𝑴𝑴, 𝜴𝜴, 
and 𝑻𝑻 matrices under different orders of temporal covariance structures in each model in simulation studies. Further, these 
values were similar in both models. On the other hand, the estimation of matrix 𝑻𝑻 relies on the misspecification of 𝚽𝚽. Thus, 
𝛾𝛾𝑻𝑻s should have the least value compared to lower orders if the order of the incorrect temporal structure is equal to or greater 
than the correct order of the temporal structure. The estimations of matrix T and the number of mixture components k are 
overestimated in MVND models if the datasets have a heavy-tail or outlier observations. The mixture of MVTDs commonly 
selected the model with the right temporal structure and the right number of mixture components. On the other hand, the 
time it took to fit a mixture of MVTDs was much longer than it required to fit a mixture of MVNDs, which is a trade-off for 
more precision.  
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