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Abstract - Missing data is a common problem that can be present in longitudinal studies and can seriously impact the statistical 

analysis estimates by producing biased estimates. A correlated random effect (CRE) method for longitudinal models using latent 

variables based on Gibbs sampling has previously been proposed to deal with missingness in the response and has demonstrated 

and performed well in scenarios that assume the missingness of the response variable is Missing Not at Random (MNAR). However, 

it is currently unable to accommodate incomplete data in the analysis model explanatory variables. The proposed Two-Step method 

addresses this problem of dealing with Missing at Random (MAR) explanatory variables by incorporating an additional step before 

utilizing the CRE method. The extra step uses the MICE algorithm, a common approach to handling MAR data and producing 

imputed datasets. The CRE method is then applied to the imputed MICE datasets. Using simulated longitudinal data, the Two-Step 

method is compared with the CRE method and some baseline models (scenarios where there is no missingness and scenarios where 

analysis is complete case), for different numbers of repeated measures and missing proportion factors. The Two-Step method 

performed similarly to when the CRE method is applied to scenarios where there was no missingness in the explanatory variables, 

outperforming the complete case scenario in terms of out-of-sample predictive performance and how closely the parameter 

estimations match the parameters that generates the data. 
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1. Introduction 
Missing data is a common problem that can be present in longitudinal studies, where data records are obtained 

repeatedly over time on the same subjects. For example, in medical sciences research, patients may miss scheduled 

appointments or drop out of the study for different reasons. Using complete case data analysis may lead to biased 

parameter estimates [1]. Three main missingness mechanisms are introduced by [2]; Missing Completely at Random 

(MCAR), where missing values are independent of observed and unobserved data, Missing at Random (MAR), where 

missing values depend on observed data, and Missing Not at Random (MNAR), where missing values depend on 

unobserved data. The MCAR and MAR mechanisms are defined as ignorable missingness because they assume that the 

observed data explain missingness, therefore, inference is carried out using the observed data only. On the other hand, 

MNAR is defined as non-ignorable missingness, meaning the missing data mechanism should be also explicitly 

considered [3]. This involves modelling the joint distribution of the data and the missingness model, simultaneously 

estimating the observed model and the nonresponse process. The presence of missing values can be in the response and 

in the explanatory variables in the analysis model, since the measurements of these variables are taken repeatedly over 
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time in longitudinal studies. The proposed method aims to deal with missing data in both the response and explanatory 

variables and estimate parameters of interest, where the response missingness is non-ignorable and the explanatory 

variables missingness is ignorable. 

We extend the work that falls in the class of Correlated Random Effect (CRE) selection modelling to handle 

longitudinal data outlined by [4], where the limitation of the existing method is that it focuses on the missingness in the 

response and assumes the analysis model explanatory variables are fully observed. This model-based estimation and 

imputation procedure extends to accommodate incomplete predictors using the Multiple Imputation by Chained 

Equations (MICE) algorithm to impute missing values under the MAR assumption [5] based on its overall effectiveness 

and accessibility [6]. The proposed method aims to produce estimates of the analysis regression model where response 

and explanatory variables are incomplete, reflecting what we might encounter in real-life datasets. 

 

2. Proposed Method 
The proposed Two-Step method starts by using the MICE algorithm to produce multiple imputed datasets of the 

missing observations in the analysis model's explanatory variables. Next, the CRE method is applied to each imputed 

data set to handle missingness in the model response, and the analysis model is estimated simultaneously as a second 

step. Then, the overall parameter estimates are obtained by combining the posterior distributions. This is done by 

aggregating the posterior distributions from each dataset into a single distribution as outlined by [7]. In the CRE method 

we are following the approach proposed by [4]. However, in our work we are assuming our data follows a parametric 

Linear Mixed Effects model (LMM). 

 

2.1. MICE Algorithm 
The MICE algorithm begins by choosing a random sample of the incomplete variable's observed values and setting 

up the incomplete variable imputation model. Every iteration of the procedure involves sampling the incomplete variable 

model's parameters from its conditional distribution using the most recent completed data and the observed portion of 

the current variable. After that, given the other variables and parameters, missing values are imputed from the predicted 

distribution of the missing values. Lastly, it fills in the incomplete variable with the imputed values from the last 

iteration. It creates multiple imputed datasets by running them multiple times with varied initial values. The MICE 

algorithm works as a Bayesian simulation technique that uses a Gibbs sampler, which takes samples from the conditional 

distributions to obtain samples from the joint distribution. The conditional distributions in MICE represent the 

distributions of incomplete variables, given the observed data variables. The algorithm creates multiple copies (𝐾) of 

the data and replaces the missing values in each copy with predicted values from observed data. Then, a standard 

statistical method for each imputed dataset is applied. Finally, the pooled estimates are computed to get general results 

and to consider the uncertainty produced by the missing values [5]. The process of the MICE algorithm for a dataset 

consists of vectors of variables 𝑿 as outlined in Algorithm 1, based on [5]:  

 

 
 

where 𝑿𝑗 is the 𝑗 th incomplete variable, 𝑗 = 1, … , 𝐽 , and 𝑿𝑗  ̀ is the 𝑗 ̀th complete variable, 𝑗 ̀ = 1, … , 𝐽  ̀and 𝑿−𝑗 is all 

other incomplete variables except 𝑿𝑗. 𝑿𝑗
𝑚𝑖𝑠 and 𝑿𝑗

𝑜𝑏𝑠 represents the missing and observed observations in the 𝑗𝑡ℎ 
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variable, respectively. 𝜹𝑗 represents the vector of the imputation model parameters for variable 𝑗. The MICE algorithm 

will run 𝐾 times in parallel and the number of iterations, 𝑊, recommended by [5] is between 5 and 10. 

 

2.2. CRE Method 

The CRE method proposed by [4] will be explained in this section, although we employ a parametric LMM, which 

is a standard framework for studying the relationship between longitudinal outcomes and predictor variables. For a 

continuous response measured over 𝑚 different time points from 𝑛 subjects and a set of predictors, some of which are 

partially observed, the response for the 𝑖𝑡ℎ subject at the 𝑡𝑡ℎ time point, which we denote by 𝑌𝑖(𝑡), can be modelled as 

the following: 

 

𝑌𝑖(𝑡) = 𝜇 + ∑ 𝛽𝑗𝑋𝑗𝑖(𝑡) +

𝐽

𝑗=1

∑ 𝜆𝑗 ̀𝑋𝑗 �̀�(𝑡) +

𝐽 ̀

𝑗 =̀1

𝑢𝑖�̃�𝑖(𝑡) + 𝑒𝑖(𝑡), (1) 

 

where 𝐽  ̀ and 𝐽 express the number of predictors of fixed effects that are fully observed and partially observed 

respectively. The fixed intercept represents the mean of the overall population, expressed as 𝜇, 𝛽𝑗 & 𝜆𝑗 ̀ denote the 

regression coefficients associated with the 𝑗𝑡ℎ partially observed and 𝑗′𝑡ℎ fully observed fixed effects, respectively, 

𝑋𝑗𝑖(𝑡) is the outcome of the 𝑗𝑡ℎ partially observed fixed effect for subject 𝑖 at time 𝑡 and 𝑋𝑗 �̀�(𝑡) is the outcome of the 

𝑗′𝑡ℎ fully observed fixed effect for subject 𝑖 at time 𝑡. Subject-specific random effects 𝑢𝑖 capture the longitudinal 

dependence and are assumed to be independent and identically distributed from 𝑁(0, 𝜎𝐵
2) and �̃�𝑖(𝑡) is the outcome of 

the random effect for subject 𝑖 at time 𝑡. The residuals, 𝑒𝑖(𝑡), are assumed to be independent and identically distributed 

from 𝑁(0, 𝜎𝐴
2). To consider the non-ignorable missing values in the response we will define a binary missing response 

indicator 𝑈𝑖(𝑡), where 𝑈𝑖(𝑡) = 0 if 𝑌𝑖(𝑡) is missing and 𝑈𝑖(𝑡) = 1 if  𝑌𝑖(𝑡) is observed. The latent response variable can 

be written as: 

 

𝑌𝑖(𝑡) = {
𝑌𝑖

∗(𝑡), 𝑖𝑓      𝑈𝑖(𝑡)  = 1

𝑚𝑖𝑠𝑠𝑖𝑛𝑔, 𝑖𝑓      𝑈𝑖(𝑡)  = 0
 (2) 

 

We can then rewrite the regression model given in Equation (1) as follows: 

 

𝑌𝑖
∗(𝑡) = 𝜇 + ∑ 𝛽𝑗𝑋𝑗𝑖(𝑡) +

𝐽

𝑗=1

∑ 𝜆𝑗 ̀𝑋𝑗  ̀𝑖(𝑡) +

𝐽  ̀

𝑗 =̀1

𝑢𝑖�̃�𝑖(𝑡) + 𝑒𝑖(𝑡) (3) 

 

Now consider the following model for the missing response mechanism as: 

 

𝑈𝑖
∗(𝑡) = 𝛼 + ∑ 𝜃𝑙𝑋𝑙𝑖(𝑡) +

L 

𝑙=1

𝑣𝑖�̃�𝑖(𝑡) + 𝜀𝑖(𝑡), 

 

(4) 

where L = 𝐽  ̀+ 𝐽 is the total number of fixed effects in the response model, the fixed intercept represents the mean of the 

overall population, expressed as 𝛼, 𝜃𝑙 denotes the regression coefficients of the 𝑙𝑡ℎ fixed effects, which expresses the 

systematic influence of missingness due to the unobserved response variables. Subject-specific random effects 𝑣𝑖 

capture the longitudinal dependence and are assumed to be independent and identically distributed from 𝑁(0, 𝜎𝐶
2) and 

the residuals 𝜀𝑖(𝑡) are assumed to be independent and identically distributed from 𝑁(0, 1). 𝑈𝑖(𝑡) is conditional on the 

proclivity 𝑈𝑖
∗(𝑡) via a probit model, which divides the standard normal into two parts. If 𝑈𝑖

∗(𝑡) is greater than zero, 

then 𝑈𝑖(𝑡) = 1 and if 𝑈𝑖
∗(𝑡) is less than zero then 𝑈𝑖(𝑡) = 0 [8]. Following [4], we assume a correlation between the 

response variable 𝑌𝑖
∗(𝑡) and the response missing indicator variable 𝑈𝑖

∗(𝑡) random effects, and therefore consider 𝑢𝑖 and 
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𝑣𝑖 are correlated random vectors following a multivariate normal distribution with mean vector 0 and covariance matrix 

Σ = (
𝜎𝐵

2 𝜎𝐷
2

𝜎𝐷
2 𝜎𝐶

2), where 𝜎𝐷
2 represents the covariance between 𝑢𝑖 and 𝑣𝑖 random effects.   

 

Bayesian inference is used to estimate the model parameters in Equation (3) and in Equation (4) using an iterative 

MCMC algorithm (Gibbs sampling) to simultaneously impute missing values in the response and produce analysis 

model estimates. For Gibbs sampling to be carried out, one needs to sample from the joint posterior of the model 

parameters and latent variables. Let 𝒀 = (𝑌11(𝑡), … , 𝑌𝑛𝑚(𝑡)),  𝒀∗ = (𝑌∗
11(𝑡), … , 𝑌∗

𝑛𝑚(𝑡)), 𝑼 =

(𝑈11(𝑡), … , 𝑈𝑛𝑚(𝑡)),  𝑼∗ = (𝑈∗
11(𝑡), … , 𝑈∗

𝑛𝑚(𝑡)). The joint posterior density for the latent variables and the 

parameters associated with the proposed model is: 

 

𝑝(Θ𝑌,𝑈, 𝒀∗, 𝑼∗ ∣ 𝒀, 𝑼) ∝ 𝑝(Θ𝑌,𝑈) ×

∏  

𝑛

𝑖=1

∫  
𝑢𝑖=∞

𝑢𝑖=−∞

∫  
𝑣𝑖=∞

𝑣𝑖=−∞

∏  

𝑚

𝑡=1

× 𝑓(𝑌𝑖
∗(𝑡), 𝑈𝑖

∗(𝑡) ∣ 𝑢𝑖, 𝑣𝑖) × 𝑔(𝑢𝑖, 𝑣𝑖) ×

{𝐼(𝑈𝑖
∗(𝑡) > 0)𝐼(𝑈𝑖(𝑡) = 1) + 𝐼(𝑈𝑖

∗(𝑡) ≤ 0)𝐼(𝑈𝑖(𝑡) = 0)}𝑑𝑢𝑖𝑑𝑣𝑖,

 

 

(5) 

where Θ𝑌,𝑈 = { 𝜇, 𝜷, λ, 𝛼, θ, 𝜎𝐴
2, Σ} denote a set of analysis model parameters, 𝜷, λ, θ each denotes a vector of the 

corresponding regression coefficients. 𝑓(𝑌𝑖
∗(𝑡), 𝑈𝑖

∗(𝑡)) is the joint distribution of 𝑌𝑖
∗(𝑡) and 𝑈𝑖

∗(𝑡), 𝑔(𝑢𝑖, 𝑣𝑖) is the joint 

distribution of the random effects 𝑢𝑖 and 𝑣𝑖. I(A) is an indicator variable which takes the value 1 if A occurs and zero 

otherwise. The prior distribution is 𝑝(Θ𝑌,𝑈) for Θ𝑌,𝑈. We consider non-informative conjugate priors due to lack of prior 

information and to produce closed form conditional distributions. Therefore, the prior distribution can be broken up and 

expressed as:  

 

𝑝( 𝜇, 𝜷, 𝛌, 𝜎𝐴
2) ∝

1

𝜎𝐴
2 ;               𝑝(𝛼, 𝛉) ∝ 1;               𝑝(Σ) ∝ 𝐼𝑊(𝜈, Λ) (6) 

 

Note, we use the Inverse Wishart (IW) distribution because in our application using a more vague prior for Σ 

has shown non convergence. We set 𝜈 > 𝑝 + 1 and 𝛬 = (𝜈 − 𝑝 − 1)𝐼, to make it weakly informative and a valid 

prior distribution, where 𝑝 is the dimension of the covariance matrix, Λ is a 𝑝 × 𝑝 scale matrix and 𝐼 is a 𝑝 ×
𝑝 identity matrix [9]. 

 

2.3. Estimation 
 The response and the observed predictor variables in the analytical model will be used in the Two-Step method to 

impute the incomplete predictor variables. Since the imputation and analysis steps are performed separately [6], this 

identifies and captures any relationships present in the data, potentially improving the imputation accuracy. Ten imputed 

MICE datasets will be created (i.e. K = 10 in Algorithm 1), which could increase the accuracy of the results but may be 

computationally costly. The LMM is applied in the MICE step to impute missing values for incomplete time-varying 

predictors given all other variables. The Two-Step method will produce posterior distributions for each parameter 

estimate. Therefore, these posteriors will be aggregated by mixing them into a single posterior distribution [7]. 

 

3. Simulated Data 
The performance of the proposed method is examined using a simulated study; we generate data for longitudinal 

settings, using the LMM with a random intercept. We assume one incomplete continuous predictor 𝑿1(𝑡) measured 

over time, and two fully observed predictors 𝑿2(𝑡) and 𝑿3(𝑡). The analysis model and missingness model of the 

response were generated based on: 

 

𝑌𝑖
∗(𝑡) = 𝛽0 + 𝛽1𝑋1𝑖(𝑡) + 𝛽2𝑋2𝑖(𝑡) + 𝛽3𝑋3𝑖(𝑡) + 𝑢𝑖�̃�𝑖(𝑡) + 𝑒𝑖(𝑡) (7) 

 



 

 

 

 

152-5 

𝑈𝑖
∗(𝑡) = 𝜃0 + 𝜃1𝑋1𝑖(𝑡) + 𝜃2𝑋2𝑖(𝑡) + 𝜃3𝑋3𝑖(𝑡) + 𝑢𝑖�̃�𝑖(𝑡) + 𝜖𝑖(𝑡) (8) 

 

The values of the regression coefficients in the response missingness model in Equation 8 were derived to produce the 

desired missing data proportion, using a probit regression equation [10] to connect missingness probabilities of the 

response Y to values of Y through the latent missingness indicator regression model 𝑼∗. The model predictor 𝑿2(𝑡) is 

generated from 𝑈𝑛𝑖𝑓(0,2), 𝑿3(𝑡) from 𝐵𝑒𝑟𝑛(0.6) and 𝑿1(𝑡) from a LMM with a random intercept and the fully 

observed predictors 𝑿2(𝑡) and 𝑿3(𝑡) as explanatory variables. This allows us to reproduce the missing values of 

𝑿1(𝑡) using these variables (𝑿2(𝑡) and 𝑿3(𝑡)). We assume 𝑛 = 100 number of subjects in the study and varied the 

values of the number of repeated measures per subject, assuming m = 2, 4 & 8. A number of combinations for the 

proportion of missing data was considered, namely 20%, 40% and 60% in the analysis model response with fixed 20% 

missingness in the incomplete predictor and 20%, 40% and 60% in the analysis model incomplete predictor with fixed 

20% missingness in the analysis model response. The missingness of the incomplete predictor 𝑿1(𝑡) is generated using 

the “deleteMARcensoring()” function in the “missMethod” package [11] in R. The performance of the proposed method 

is compared with the baseline models i.e. the model with fully observed variables (no missing data) and the model with 

available data (missing values remain in the dataset and no imputation is applied, in other words, complete case analysis 

is carried out). Also, we will compare the proposed method with the CRE method [4] assuming fully observed predictors, 

as well as when MICE is used to impute the model’s response and incomplete predictor. Root Mean Square Error 

(RMSE) between data-generating parameters and estimated values will be used to assess the methods, as well as the 

RMSE for out-of-sample prediction. In order to perform out-of-sample prediction, a test dataset is generated using 

identical simulation settings as already outlined, but without missingness, for each number of repeated measures. We 

examine the distribution of these criteria across 100 replications. 

 

4. Results 
The MCMC simulations were performed for 50,000 iterations, with a thinning rate of 10 applied and half of the 

iterations designated as a burn-in phase. A single chain was produced due to the computational time and storage of the 

Two-Step method. To assess convergence, we examined the Geweke convergence statistic [12] for individual 

parameters and visually examine the trace plots for each parameter. The baseline methods were fitted using a Hierarchal 

Bayesian model using Hamiltonian Monte Carlo utilised by the “brm” function in R [13]. 

 

Fig.1 shows the results for 4 repeated measures. The results for 2 and 8 are omitted for brevity since the conclusion 

is consistent across the repeated measures. The degree of variation between the estimated and data-generating 

parameters is shown by the RMSE analysis, which offers insights into the accuracy of our estimates. Generally, the 

Two-Step method RMSE is comparable to the CRE method which has no missingness in the model predictor, except 

when there is a larger proportion of missingness (60%) in the incomplete predictor, in which case the Two-Step method 

tends to have a larger RMSE. The MICE imputation of the response and incomplete predictor has similar RMSE 

performance to the Two-Step method, except with higher proportion of missingness in the analysis model response and 

incomplete predictor (60%), where it tends to have larger RMSE values and uncertainty. Overall, the available data 

shows high RMSE values and uncertainty compared with the other methods. 
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Fig. 1: Boxplots illustrating the RMSE of the analysis model parameters. Each boxplot represents one of the applied methods. The 

y-axis shows the RMSE values, and the x-axis represents one of the combinations of proportions of missingness in the model 

response and incomplete predictor. It’s obvious that the available data method has larger RMSE values as compared to other 

methods. 

 

In terms of out-of-sample performance, by looking at Fig. 2, we can see the method is robust enough to describe 

data it has not been built upon. Again, the results shown are for 4 repeated measures, with 2 and 8 repeated measures 

displaying the same conclusion (and are thus omitted for brevity). The results showed that the available data method 

has the lowest performance, while the MICE imputation approach for the model response and incomplete predictor has 

the second lowest out-of-sample prediction with higher RMSE values and lower RMSE density concentrated near 

smaller RMSE values. In contrast, the Two-Step and CRE methods have comparable and better overall performance 

and are similar to the full data, with 20% missingness in the model response. Not surprisingly, the full data method 

performs the best because it contains no missing values, providing a nice benchmark for the “best-case scenario”. This 

indicates that the Two-Step method is performing well overall, as the performance is overall on par with the full data 

method.  
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Fig. 2: The density plots of the out-of-sample RMSE for different methods across various missingness proportions in 

the response and the incomplete predictor in case of four repeated measures. Each density curve corresponds to one 

of the methods used, and each plot corresponds to a different combination of missingness proportion in the response 

and the incomplete predictor. The available data method has a lower density for smaller RMSE values and overall 

has a density shifted to the right of the plots (indicating higher error). 

 

5. Conclusion 
In longitudinal data analysis, it is common to have incomplete data for different reasons. Usually, ignorable 

missingness is assumed, however, it is possible to have non-ignorable missingness. Building on one of the recently 

proposed non-ignorable modelling frameworks [4], we proposed a method to accommodate ignorable missingness in 

the model predictor in addition to the missingness in the model response. The performance of the proposed Two-Step 

method was evaluated using RMSE for both the parameter estimation and out-of-sample prediction. The Two-Step 

method outperformed the available data, which uses only the observed values (complete case analysis) and the MICE 

imputation approach of both the response and incomplete predictor. It has a similar performance to the CRE method 

with fully observed explanatory variables, but with the advantage that it can handle missingness in the incomplete 

predictor. 

Since the Two-Step method involves applying the CRE method to multiple imputed datasets, it requires 𝐾 times 

the computational time of the CRE method, which makes it more computationally costly. Depending on the size of 𝐾, 

the dataset sample size, and whether parallel computing is available, the computational time and storage space may be 

prohibitive. Scalability of the method can therefore be the focus of future research. Additionally, it is worth noting that 

for the current work, the MAR assumption for missingness in the explanatory variable was satisfied (due to the way 

missingness was simulated). Future work could assess how sensitive the approach is to the type of missingness in the 

explanatory variable, since the MICE algorithm may perform more poorly when the data is MNAR, thus potentially 

impacting the performance of the proposed Two-Step method. 
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