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Extended Abstract 
Due to the extensive utilization of optimal designs our interest lies in some methods used for achieving optimum designs. 

Consequently, we consider two optimization algorithms to construct approximate optimal designs. One of these methods is 
a gradient-based algorithm and the other one is a gradient-free algorithm. Accordingly, we investigate the effectiveness of 
the multiplicative algorithm (MA) and simulated annealing (SA) method. Our analysis involves simulating these 
optimization algorithms in both quadratic and cubic models. Through diverse scenarios, we examine the performance of the 
estimators, identifying the strengths and weaknesses of each method. Ultimately, we present a comprehensive comparison 
between these methods. 

In this study, our primary focus is centred around the widely used information-based optimality criteria. Specifically, 
we explore the well-known D-optimality criterion introduced by [1] and [2], which aims to enhance the precision of 
estimating regression coefficients. In this study, our main objective is to evaluate the performance of two optimization 
algorithms under two distinct models. Through a comprehensive simulation study, we thoroughly examine the performance 
of studied optimal design methods and compare their accuracy, convergence time, and complexity under various scenarios. 
The focus is primarily on two optimization algorithms: the gradient-based multiplicative algorithm and the gradient-free 
simulated annealing method. 

We consider the problem of selecting an experimental design to provide information on a model 𝑦𝑦 ∼  𝑝𝑝(𝑦𝑦|𝒙𝒙,𝜽𝜽,𝜎𝜎) 
where 𝑦𝑦 is the response variable; 𝑝𝑝(. ) is a probability model; 𝒙𝒙 is a vector of design variables, 𝒙𝒙 ∈ 𝑋𝑋, 𝑋𝑋 is the design 
space; 𝜽𝜽 = (𝜃𝜃1,𝜃𝜃2, ..., 𝜃𝜃𝑘𝑘)′ is a vector of unknown parameters and 𝜎𝜎 is a nuisance parameter, fixed but unknown. In linear 
models it is further assumed that 𝑦𝑦(𝒙𝒙) has an expected value of 𝐸𝐸(𝑦𝑦|𝒙𝒙) = 𝒗𝒗′𝜽𝜽 where 𝒗𝒗 ∈ 𝑉𝑉, and 𝑉𝑉 =
 {𝒗𝒗 ∈ 𝑅𝑅𝑘𝑘 ∶  𝒗𝒗 = 𝜼𝜼(𝒙𝒙), 𝒙𝒙 ∈  𝑋𝑋} 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜼𝜼(𝒙𝒙) = (𝜂𝜂1(𝒙𝒙), 𝜂𝜂2(𝒙𝒙), . . . , 𝜂𝜂𝑘𝑘(𝒙𝒙))′. 

Assuming the set V={ 𝒗𝒗1,𝒗𝒗2, … ,𝒗𝒗𝐽𝐽}, then 𝑝𝑝 is characterized by a set of weights 𝑝𝑝1, 𝑝𝑝2, ..., 𝑝𝑝𝐽𝐽 with each weight 𝑝𝑝𝑗𝑗 
assigned to vector 𝒗𝒗𝑗𝑗 and satisfying 𝑝𝑝𝑗𝑗 ≥  0  for all 𝑗𝑗 = 1, 2, . . . , 𝐽𝐽. The objective is to optimally select these 𝑝𝑝s (weights). 
Given that 𝜽𝜽� is the least square estimator of 𝜽𝜽, the covariance of 𝜽𝜽� is proportional to 𝑀𝑀⁻¹(𝑝𝑝), where 𝑀𝑀(𝑝𝑝) represents the 
information matrix. The goal is to maximize 𝑔𝑔(𝑝𝑝) = (1 𝑘𝑘⁄ )log (det (𝑀𝑀(𝑝𝑝))) over the set 𝑝𝑝 defined as {𝑝𝑝 =  (𝑝𝑝1, 𝑝𝑝2, ..., 𝑝𝑝𝐽𝐽) ∶
 𝑝𝑝𝑗𝑗  ≥  0,∑ 𝑝𝑝𝑗𝑗

𝐽𝐽
𝑗𝑗=1 = 1}. 

The multiplicative algorithm, extensively discussed by [3], [4] and [5], is an iterative approach for generating optimal 
designs. The process starts with an initial design and updates it iteratively. The algorithm is defined as following, 

 

                                                                             𝑝𝑝𝑗𝑗(𝑟𝑟+1) = 𝑝𝑝𝑗𝑗(𝑟𝑟)𝑓𝑓(𝑑𝑑𝑗𝑗
(𝑟𝑟),𝛿𝛿)

∑ 𝑝𝑝𝑗𝑗(𝑟𝑟)𝑓𝑓(𝑑𝑑𝑗𝑗
(𝑟𝑟),𝛿𝛿)𝐽𝐽

𝑗𝑗=1
 ,                                                                   (1) 

 
where 𝑑𝑑𝑗𝑗

(𝑟𝑟) is the partial derivative of 𝑔𝑔 with respect to 𝑝𝑝𝑗𝑗 evaluated at 𝑝𝑝 = 𝑝𝑝(𝑟𝑟), and 𝑓𝑓(. ) is a positive, strictly 
increasing function that may depend on a parameter 𝛿𝛿. For the D-optimal criterion, 𝑑𝑑𝑗𝑗 > 0. 
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Another optimization algorithm discussed in this paper is Simulated Annealing, which is a gradient-free algorithm 
developed by [6]. The SA method offers the advantage of escaping from local optimums, allowing for more effective 
optimization. A comprehensive description of simulated annealing and its practical implementation can be found in the 
seminal work by [7], which highlights its characteristics and performance in various applications. 

 
The Simulated annealing has the following steps: 
- we start with 𝒑𝒑(0). Stage 𝑖𝑖 =  0, 1, 2, . .. has 𝑚𝑚𝑖𝑖 iterations; first we set 𝑖𝑖 =  0, 
- Given iteration  𝒑𝒑(𝑟𝑟), we generate  𝒑𝒑(𝑟𝑟+1) as follows: 
1- sample a candidate  𝒑𝒑∗ from a proposal distribution 𝑝𝑝(. |𝒑𝒑(𝑟𝑟)), 
2- compute ℎ�𝒑𝒑(𝑟𝑟),𝒑𝒑∗� =  exp (𝑔𝑔(𝒑𝒑∗)−𝑔𝑔(𝒑𝒑(𝑟𝑟))

𝜏𝜏𝑖𝑖
), where 𝜏𝜏𝑖𝑖 is a temperature and gets any values greater than zero, 

3- define next iteration 𝒑𝒑(𝑟𝑟+1) according to, 

𝒑𝒑(𝑟𝑟+1) = �
𝒑𝒑∗,        with probability 𝑚𝑚𝑚𝑚𝑚𝑚{ℎ(𝒑𝒑(𝑟𝑟)),𝒑𝒑∗), 1},
𝒑𝒑(𝑟𝑟),     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                        

 

4- set 𝑟𝑟 < − 𝑟𝑟 +  1 and repeat steps 1-3, 𝑚𝑚𝑖𝑖 times, 
5- update 𝜏𝜏𝑖𝑖 = 𝛼𝛼𝜏𝜏𝑖𝑖−1 and 𝑚𝑚𝑖𝑖 = 𝛽𝛽(𝑚𝑚𝑖𝑖−1), where function 𝛼𝛼 should slowly decrease the temperature, while function 

𝛽𝛽 should be increasing; set 𝑖𝑖 < − 𝑖𝑖 +  1; go to step 1. 
 
In the SA method, gradual decrease in temperature ensures that only improvements are accepted. This strategic 

approach allows the algorithm to thoroughly explore the solution space instead of prematurely converging to a local 
optimum. As a result, the algorithm increases its chances of discovering the global optimum, even in the presence of 
multiple local optima.  

The performance of the MA and SA methods are investigated through a simulation study considering quadratic and 
cubic models. In the quadratic model, both methods of the MA and SA find the first, middle and last design points as 
the optimal ones, accordingly both methods have the same accuracy in this model. But in the cubic model, the MA finds 
the optimal points more accurately than the SA.  

The general result of the paper in terms of comparing the two optimization algorithms of MA and SA under the 
quadratic and cubic models are summarized in the following: 

In terms of the performance time of the algorithms, MA is much faster than the SA. Further, the MA is not very 
sensitive to its components (function f, δ and number of simulation), so it is easy to adjust the values of its components. 
Conversely, the SA is very sensitive to its components (𝜏𝜏,𝑚𝑚,𝛼𝛼,𝛽𝛽 and number of simulation), and an improper value for 
them, makes the SA to diverge. Therefore, it is important to choose the components of the SA properly.  

Regarding the convergence of the methods, sometimes SA fails to converge, but MA has a good convergence 
behaviour. Finally, regarding the need of gradient in the algorithms, since MA is gradient based algorithm, it is necessary 
to obtain gradient in MA. However, in SA, we don’t need to obtain gradient analytically; therefore, the SA is very useful 
when it is extremely difficult or maybe impossible to acquire gradients. 
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