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Abstract – Air pollutants are considered to pose significant risk for public health and are often taken as one of the major concerns in 
related environmental epidemiology studies. Various statistical methods have been developed to assess the impact of short-term air 
pollutants exposure on human health, with Generalized Additive Models (GAMs) being the most widely-used models for their health 
risk response interpretability. However, challenges still exist for GAMs when dealing with multiple air pollutants as well as assessing 
health outcomes from accumulated exposure impacts with distributed lags. Considering the advancement of neural networks in recent 
years, this paper proposes a long short-term memory (LSTM) architecture-based model for air pollutant-related public health effect 
assessment. Datasets from the National Morbidity, Mortality and Air Pollution Study (NMMAPS) program are first prepared, and then 
an LSTM based health effect model with weighted evaluation of impacts from exposure to air pollutants with distributed lags is presented. 
Test results show that the proposed model has great potential in assessing the influence of air pollutants on public health effects, taking 
advantage of accumulative lagging impacts of multiple air pollutants exposure. 
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1. Introduction 

Short- and long-term exposure to ambient air pollutants is considered to be one of the major concerns in environmental 
epidemiology studies for their adverse effects on human health. Health effects including premature mortality, morbidity, 
hospitalization, pulmonary diseases and cardiovascular diseases are considered to be connected with typical air pollutants 
such as particulate matter (PM), and oxides of sulphur (SOx), ozone (O3) and nitrogen (NOx) [1-2]. In order to quantitatively 
evaluate their short-term adverse effects on human health, statistical methods like generalized linear models (GLMs) or 
GAMs are extensively used in this health assessment problem [3-9]. As people are usually exposed to multiple air pollutants 
simultaneously, research have been conducted to extend from investigating the influence of a single air pollutant (in earlier 
work) to exploring the influence of multiple such pollutants. The adverse effects of multiple air pollutants on human health 
are still a research hotspot today, e.g., [10-11]. However, challenges still exist when evaluating the combined influence of 
multiple air pollutant exposure on human health. It is not easy to design GLMs or GAMs in order to effectively capture the 
relation between a specific health effect and exposures to air pollutants of interest when considering distributed lags, 
especially when dealing with the uncertain confounding effects and collinearity – due to constraints on data collection and 
the public health design, individual exposures are not available, and the interactions between the pollutant predictors are 
unknown. Additionally, GAM-type health assessment models used in epidemiology study generally aim to investigate the 
form of the health outcome response to the air pollutants’ exposure variation to assist in policy making. The assessment of 
their fitting performance or reliability of parameters are typically made using the same datasets the data are fit to. 

 LSTM models are improved versions of recurrent neural networks (RNNs) and were developed to deal with 
chronological dependence in machine learning problems with sequenced inputs [12]. Its recurrent structure has shown 
superior performance in natural language processing [13], speech recognition [14], and time series forecasting [15], among 
many fields. As some public health effects of interest are generally considered to be related to accumulated short-term 
exposure to air pollutants, this work proposes an LSTM network-based model for assessment of adverse impacts of ambient 
air pollutants on human health. Besides the advantage of effectively handling sequenced air pollutants exposures, the LSTM 
network-based model also provides an effective structure in capturing the joint effects of multiple air pollutants on health 
outcomes. In this work, these two advantages are the main inspirations for applying LSTM architecture to the air pollutants-
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related public health evaluation problem in order to deal with the aforementioned issues of the traditional GAMs framework 
– including multiple nonlinearly-related air pollutant predictors in a model simultaneously. The rest of this paper is organized 
as follows. In Section 2, the air pollutants datasets from NMMAPS program are pre-processed and prepared for model 
training and testing. In Section 3, an LSTM network-based public health effect model is proposed with weighted evaluation 
of output features from LSTM network, which assesses the impacts of exposure to air pollutants with distributed lags on 
human health. In Section 4, the performance of the proposed model is tested and compared with different lags of exposure. 
Finally, a brief conclusion is made in Section 5. 

 
2. Data Preparation 

The air pollutants and health consequence data used in this work are from the National Morbidity, Mortality and Air 
Pollution Study program funded by the Health Effects Institute of the United States [16]. One of its aims was to study the 
association between air pollutants and daily mortality in large cities. Datasets of Chicago from Jan. 1, 1987 to Dec. 31, 2000 
are used in the following analysis, which include measurement of six major regulated air pollutants (SO2, NO2, CO, O3, PM10 
and PM2.5) on a daily basis and daily non-accidental mortality. Temperature is also considered as one of the factors that is 
related to the health outcome. In order to facilitate model training and analysis, the original data are pre-processed and 
prepared as follows. First, missing values of air pollutants (daily mean) are interpolated [17]. Second, a few highly extreme 
outliers in daily mortality and daily mean of each air pollutant are replaced with corresponding average value of days before 
and after the day with anomaly (e.g., spike mortality occurs on Jul. 15, 1995 due to an extreme heat wave, and is replaced 
with the average of mortalities in Jul. 14 and Jul. 16 of 1995). Then the original data are rescaled:  
 

𝑥𝑥s,𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

 (1) 

 
where xi is the i-th value in the original dataset for each category, µx and σ x are their mean and standard deviation, and xs,i  is 
the corresponding standardized value. After standardization, each category of original data is rescaled to have a mean value 
of 0 and a standard deviation of 1. The main purpose of standardizing the original data is to eliminate the influence of 
dimension for each category as the ambient air pollutants are generally measured and recorded with different metrics and 
have different scales. The other reason for using standardization to pre-process the data is to accelerate the solving process 
of searching for the optimal parameters during the training of model [18]. Finally, the datasets are reorganized with each 
element being a series of the original data. For example, assume the length of each element of a specific category of air 
pollutant data after reorganization is m, then the reorganized data sample is shown as Eqn. (2), 
 

𝒙𝒙new,𝑖𝑖 = [𝑥𝑥s,𝑖𝑖−𝑚𝑚+1, 𝑥𝑥s,𝑖𝑖−𝑚𝑚+2, … , 𝑥𝑥s,𝑖𝑖] (2) 
 
where xnew,i is the i-th reorganized data sample with length m. The new data series becomes [xnew,1, xnew,2, …, xnew,n-m+1] with 
n being the number of original data samples. The main purpose of this reformulation of the air pollutants data is to facilitate 
the model training process. The length m is the same as the time lag used in GAM-type health effect model, while the 
difference is that Eqn. (2) has distributed lags and the GAMs generally have a single lag. Thus this model can be thought of 
as combining some of the philosophy of the traditional model and the work on distributed lag models, e.g., DLNMs [22] or 
synthetic lag [23].  
 
3. LSTM Based Public Health Consequence Assessment Model 

From the world of neural networks and machine learning, LSTM is a form of improved RNN that is designed to deal 
with sequenced data [19-20]. By handling the gradient vanishing problem and gradient explosion problem using gate 
mechanisms, LSTM can deal with long-term dependency of data sequence and extract information from periods of time 
effectively. Its basic cell has several specially designed neural network layers interacting with each other to control the 
information flow and make decisions on what information should go through, be stored in the network or be filtered out. 
Through manipulation of information from a data sequence in each cell and repeating of these basic cells, a LSTM network 
is constructed and is capable of extracting features and information from a data sequence for analysis.  
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In air pollutants-related public health studies, the health outcome (e.g., mortality, morbidity) is generally assumed to be 
influenced by a short timescale of exposure to specific air pollutants [2-8, 21]. That is to say, the health outcomes are 
temporally related to historical exposures and are results of accumulated impacts. However, the impacts of exposure to air 
pollutants with distributed lags, specifically daily exposures before the consequence occurs, is generally not assessed and 
included in the GAM-type health consequence assessment models. Considering these issues and the aforementioned merits 
of LSTM framework, an LSTM based model with weighted evaluation of adverse impacts of historical exposure is proposed 
and applied to air pollutants-related public health consequence assessment. The structure of the proposed model is shown in 
Fig. 1 and detailed as follows. 
 

  
Fig. 1: Structure of LSTM based Air Pollutants-Related Health Consequence Assessment Model. 

 
For evaluation period t, the input to the model is an air pollutants exposure series of previous m periods as [xs,t-m+1, xs,t-m+2,…, 
xs,t]. Note that each element of the sequence is a vector form for multiple air pollutants input. The LSTM network has r 
recurrent layers to process the m-period input and each layer has l output hidden features. The LSTM cell mainly consists of 
three specifically designed gates for information flow manipulation as shown in Fig. 1. In order to simplify the expression, 
layer number in following model description is neglected. Gate is essentially a bitwise multiplication operation after 
transformation using sigmoid function as σ. For period j, j=t-m+1, t-m+2, …, t, the coefficient gf,j from the forget gate is 
expressed as Eqn. (3), 

 
where wf, uf and bf are weights and bias parameters. The value of gf,j is determined by the combination of exposure in j-th 
period as xs,j and hidden layer output hj-1 from (j-1)-th period. This forget gate coefficient determines how much information 
from exposure in (j-1)-th period will be used in j-th period. The input gate coefficient gi,j and new exposure information input 
C'j from the j-th period are as Eqn. (4) and Eqn. (5) respectively, 
 

𝒈𝒈f,𝑗𝑗 = 𝜎𝜎(𝒘𝒘f𝒙𝒙s,𝑗𝑗 + 𝒖𝒖f𝒉𝒉𝑗𝑗−1 + 𝒃𝒃f) (3) 
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𝒈𝒈i,𝑗𝑗 = 𝜎𝜎(𝒘𝒘i𝒙𝒙s,𝑗𝑗 + 𝒖𝒖i𝒉𝒉𝑗𝑗−1 + 𝒃𝒃i)  (4) 
𝑪𝑪′𝑗𝑗 = tanh(𝒘𝒘c𝒉𝒉𝑗𝑗−1 + 𝒖𝒖c𝒙𝒙s,𝑗𝑗 + 𝒃𝒃c)  (5) 

 
where wi, ui, wc, and uc are weights and bi and bc are biases. With forget gate coefficient and input gate coefficient, the state 
of the j-th cell is updated using Eqn. (6), 
 

𝑪𝑪𝑗𝑗 = 𝒈𝒈f,𝑗𝑗⨀𝑪𝑪𝑗𝑗−1 + 𝒈𝒈i,𝑗𝑗⨀𝑪𝑪′𝑗𝑗  (6) 
 
where ⨀ is the Hadamard product. The state Cj of j-th period filters out partial information from last period and adds new 
information from current period. After cell state update, the output gate parameter go,j and the cell output hj are formulated 
as Eqn. (7) and Eqn. (8), 
 

𝒈𝒈o,𝑗𝑗 = 𝜎𝜎(𝒘𝒘o𝒙𝒙s,𝑗𝑗 + 𝒖𝒖o𝒉𝒉𝑗𝑗−1 + 𝒃𝒃o)  (7) 
𝒉𝒉𝑗𝑗 = 𝒈𝒈o,𝑗𝑗tanh (𝑪𝑪𝑗𝑗)  (8) 

 
where wo, uo and bo are the output gate parameters. The output of a cell is determined by current cell state Cj, output of last 
period hj-1, and current input xs,j. Except for the first layer, the inputs of other layers are the cell outputs of previous 
corresponding layers. For the LSTM framework with l layers in Fig. 1, its final outputs are ht-m+1, h t-m+2, …, ht that contain 
dependent information from the input air pollutants exposure series. As these outputs from LSTM may have different 
contributions to the health consequences at time period t of interest, a weighted evaluation of their influence is further made 
using a softmax layer after a linear combination layer and the influence of each period k on the consequence is calculated as 
Eqn. (9), 
 

𝑤𝑤𝑘𝑘 =
exp(𝐿𝐿(𝒉𝒉𝑘𝑘))

∑ exp(𝐿𝐿(𝒉𝒉𝑘𝑘))𝑘𝑘
,𝑘𝑘 = 𝑡𝑡 − 𝑚𝑚 + 1, 𝑡𝑡 − 𝑚𝑚 + 2, … , 𝑡𝑡. (9) 

 
where wk is the weight used to evaluate the contribution of k-th output from the LSTM to the health outcome at t and L is a 
linear combination layer. In this formulation, all the historical information of m periods before time period t is used to 
generate the health outcome at t. At last, the health outcome of period t is predicted through a weighted sum of LSTM outputs 
using a linear output as Eqn. (10), 
 

 
where L means linear out and the output is public health outcome at period t (e.g., mortality count, morbidity count, 
cardiovascular disease count, etc.). 

Note that the above formulation of a LSTM based health effect assessment model, the LSTM framework is not only 
used to process and extract chronically dependent information from the input sequenced air pollutants exposure from every 
single layer, but also used to capture and fit the relation between the multiple air pollutants exposure and the health 
consequence with its multiple layers as well as the subsequent weighted evaluation layer and linear output layer.   
 
4. Experimental Results 

To evaluate the performance of the above model in assessment of public health effects, air pollutants and related non-
accidental mortality data from Chicago from Jan. 1, 1987 to Dec. 31, 2000 are used for experimentation. The selected inputs 
for the model are daily mean concentration level of PM10 and O3, as well as daily mean temperature, which are frequently 
used in relevant studies [6, 10, 11, 21], being a classic and easily accessible dataset. Each category of data is pre-processed 
with interpolation, standardization, and reorganization. Then the pre-processed datasets are split into two parts, 70% for 
training the proposed model and the remainder (30%) for evaluating its performance. Performance metrics used are RMSE 
(Root Mean Square Error) and MAE (Mean Absolute Error) as Eqns. (11) and (12), with RMSE evaluating the deviation 
between predicted mortality and true mortality and MAE evaluating absolute prediction error. Formally, 

𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 = 𝐿𝐿(𝑤𝑤𝑘𝑘𝒉𝒉𝑘𝑘),𝑘𝑘 = 𝑡𝑡 − 𝑚𝑚 + 1, 𝑡𝑡 − 𝑚𝑚 + 2, … , 𝑡𝑡. (10) 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
� (𝑦𝑦P,𝑖𝑖 − 𝑦𝑦T,𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (11) 

𝑅𝑅𝑀𝑀𝑅𝑅 =
1
𝑛𝑛
� |𝑦𝑦P,𝑖𝑖 − 𝑦𝑦T,𝑖𝑖|

𝑛𝑛

𝑖𝑖=1
 (12) 

 
where yP,i and yT,i are the i-th predicted value and true value, respectively. n is the number of samples used. The experiments 
are performed using PyTorch version 2.1.1+cu121 [24]. The main parameters of the model used in the experiments are as 
follows. The numbers of hidden features (l) and recurrent layers (r) are 13 and 5, respectively. A variable learning rate is 
used with the initial value set to 0.05 and a decaying rate of 0.95 every 100 training epochs. The number of total training 
epochs is set to 8000. 
 

  
Fig. 2: Daily Mortality Prediction Comparison with Different m (Daily NonAM: daily non-accidental mortality,  

Prediction_test: prediction on testing set, Prediction_train: prediction on training set). 
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Table 1: Performance Metrics with Different m on Training and Testing Sets. 
 

Data sets Metrics m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 
Training 

set 
RMSE 0.6493  0.0666  0.0613  0.0016  0.0000  0.0007  0.0019  0.0104  
MAE 0.4485  0.0167  0.0171  0.0005  0.0000  0.0002  0.0006  0.0029  

Testing 
set 

RMSE 1.5313  1.8618  1.8588  1.4897  1.3949  1.4564  1.4050  1.5198  
MAE 1.1645  1.4640  1.4362  1.1828  1.1171  1.1667  1.1201  1.2028  

 
 With PM10, O3 and temperature as the predictors, the performance of the proposed health effect model with input series 
length from m=1 to m=8 are compared and experimental results are shown in Fig. 2 and Table 1, where all results are 
evaluated on the standardized datasets and m is the number of days of air pollutants exposure before the day when health 
consequence of interest (mortality) occurs. It is obvious that all eight experiments capture significant portions of the 
fluctuations of the mortality on both the training and testing sets, which shows that the proposed model has potential in 
assessing air pollutant-related public health effects, from a pure modelling perspective: the model has good forward 
predictive performance. For the training set, both metrics have downward trends with m increasing from 1 to 8. Part of the 
reason for this change is that a longer input series means more information are provided to the network, where more useful 
features and information are extracted for assessing the daily mortality. However, this downward trend can hardly be seen 
for the testing set. The first reason comes from the noise of training set, where a larger m brings both more useful information 
as well as higher data noise. The model learns mortality-related information and noise at the same time, which may lead to 
overfitting. The second one is that data distribution of the testing set may not be exactly the same as that of the training set, 
which lowers the generalization ability of the model. Although performance on the testing set are not perfect, the proposed 
model still shows great potential in the air pollutant-related public health effect problems. Explaining the health response 
sufficiently using the air pollutants as predictors is, after all, the structure of the classic models used in the field. Typically, 
this is done in-frame, predicting all points simultaneously, with almost no out-of-band prediction potential. This test shows 
that LSTMs have the potential to forecast such problems using nonlinear constructions from multiple air pollutants 
simultaneously. 
 There are several points worth noting for the proposed model in the experiments. First, model parameters keep the 
same for eight experiments, whereas parameters for different m can further be finely tuned for performance improvement. 
Second, the aforementioned downward trends for both metrics may not be absolute for longer m as a longer input air pollutant 
series may bring redundant information that exceeds the feature extraction and relation capture ability of the model. Third, 
de-noising can be performed on the original air pollutants and health consequence datasets to improve the performance of 
the model. In addition, diversified sampling methods can be used to split the training and testing sets to reduce the influence 
from variation of data distribution and feature selection for the inputs can help to find the most relevant influencing air 
pollutants. These measures will further improve the performance of the proposed model. 
 
5. Conclusion 

Ambient air pollutant-related public health effects have been a research hotspot for years in environmental 
epidemiology. For the extensively used assessment models like GAMs, there exist challenges in dealing with accumulated 
impacts of air pollutants exposure from distributed lags for fitting reasons, as well as the cross impacts from different 
pollutants, despite efforts such as [22, 23].  In this paper, an LSTM network-based model is proposed to evaluate the impacts 
from distributed lags of air pollutants exposure on public health outcomes. The LSTM framework is used to extract the 
outcome-related features from the exposure series and then a weighted evaluation is used to assess their impacts the health 
outcome. Air pollutants and non-accidental mortality data of Chicago from NMMAPS program are used to test the 
performance of the proposed method and experimental results show that the proposed model has potential in capturing the 
accumulated impacts from the exposure with distributed lags and dealing with cross impacts from multiple air pollutants. In 
the future work, de-noising of the datasets, feature selection of multiple air pollutants and finer tuning of model hyper-
parameters can be performed to further improve the performance of the proposed model, especially for evaluating a specific 
health consequence. 

The primary drawback to this approach is interpretability, as it is difficult to summarize the large numbers of 
coefficients that result from such neural network models. This is an open area of research and will require significant further 
effort to allow for comparability of this new approach with previously published and validated frameworks.  
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