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Abstract - High-Dimensional Low-Sample Size (HDLSS) data pose significant challenges in fields like medicine and neuroscience. 
Traditional principal component analysis (PCA) often fails under these conditions, leading to unstable eigenvalue estimation. This study 
introduces Noise Reduced-Common Principal Component Analysis (NR-CPCA), a method that combines Common Principal Component 
Analysis (CPCA) with a noise reduction technique to enhance eigenvalue stability and reliability in HDLSS data. By comparing 
eigenvalue estimations from NR-CPCA and traditional CPCA across various dimensions (1000, 2000, 3000) and sample sizes (10 to 
120), we demonstrate that NR-CPCA mitigates noise effects more effectively, ensuring stable principal component selection. Simulation 
results confirm that NR-CPCA reduces variability in eigenvalue estimation, making it a valuable tool for dimensionality reduction in 
multi-view data. Despite limitations in simulation-based validation, NR-CPCA shows promise for real-world applications in data-
intensive fields. Future research should focus on refining this method and applying it to diverse datasets to fully realize its potential. NR-
CPCA provides an important advancement for researchers dealing with HDLSS data, promoting more accurate analysis and contributing 
to progress in data science, biology, and neuroscience. 
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1. Introduction 

High-Dimensional Low-Sample Size (HDLSS) data can be found in various fields such as medicine (Rahnenführer et 
al. [1]) and biology and neuroscience (Liu & Vinck [2]). Dimension reduction is effective for data analysis, and principal 
component analysis (PCA) is particularly widely used. However, traditional PCA is based on the assumption that the number 
of samples, 𝑛𝑛, is greater than the number of variables, 𝑑𝑑 (i.e., 𝑛𝑛 > 𝑑𝑑). When this assumption is violated, particularly when 
𝑛𝑛 ≪ 𝑑𝑑, the mathematical guarantees of the analysis are lost (Yata & Aoshima [3]). Specifically, the estimation of eigenvalues 
tends to become unstable, and due to the differing geometric properties of the data, the mathematical assumptions of PCA 
often break down (Yata & Aoshima [4]). There is a method known as common principal component analysis (CPCA) that 
allows for the fair selection of principal components across multiple databases (Flury [5]). CPCA is a powerful technique 
for achieving a unified understanding of data structures by finding common principal components among different datasets. 
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However, traditional CPCA also faces problems when the sample size is small, leading to increased data variability and 
decreased stability of eigenvectors (Takane & Hunter [6]). On the other hand, methods such as Sparse PCA (Johnstone & 
Lu [7]) and the Noise Reduction (NR) Method (Yata & Aoshima [3]) have been developed for HDLSS data in single datasets. 
These methods aim to effectively reduce dimensionality and provide mathematical guarantees for the analysis. In this study, 
we propose extending CPCA using the NR method proposed by Yata & Aoshima [3] to create NR-CPCA, which enables 
mathematically guaranteed analysis in dimension reduction for HDLSS data. This research sets the following research 
question (RQ): Can NR-CPCA mitigate the impact of noise in general principal component analysis? Based on the above 
research question, we will verify the effectiveness of NR-CPCA. The contribution of this study lies in proposing for the first 
time a dimension reduction method for HDLSS multi-view data. 
 
2. Method 

In this study, we evaluate the consistency between estimated eigenvalues and actual eigenvalues, based on Yata & 
Aoshima [3], to verify the effectiveness of the proposed method. Specifically, by comparing the set eigenvalues, we assess 
the extent to which the estimated eigenvalues from CPCA and NR-CPCA are influenced by noise. CPCA involves calculating 
the covariance matrix, then computing the weighted average before determining the eigenvalues. In contrast, NR-CPCA 
takes into account the characteristics of high dimensional data by computing the dual covariance matrix, followed by the 
weighted average, before calculating the eigenvalues. Moreover, the eigenvalues and eigenvectors in NR-CPCA are 
computed based on NR method (Yata & Aoshima [3]), rather than using the eigenvalues and eigenvectors calculated by 
conventional PCA. Here, the estimated eigenvalues 𝜆̃𝜆𝑖𝑖  of 𝑆𝑆𝐷𝐷 = (𝑋𝑋 − 𝑋𝑋�)𝑇𝑇(𝑋𝑋 − 𝑋𝑋�) and their corresponding estimated 
eigenvectors ℎ�𝑖𝑖 are given as (1) and (2). 

 

𝜆̃𝜆𝑖𝑖 = 𝜆̂𝜆𝑖𝑖 −
tr(𝑆𝑆𝐷𝐷)− ∑ 𝜆̂𝜆𝑠𝑠𝑖𝑖

𝑠𝑠=1

(𝑛𝑛1 + 𝑛𝑛2 + ⋯+ 𝑛𝑛𝑘𝑘 − 1)− 𝑖𝑖
 (1) 

 
Let the number of dimensions of 𝑋𝑋𝑖𝑖 ∈ ℝ𝑑𝑑×𝑛𝑛𝑖𝑖(𝑖𝑖 = 1, 2,⋯ ,𝑘𝑘) be 𝑑𝑑, and the number of samples be 𝑛𝑛𝑖𝑖(𝑑𝑑 ≫ 𝑛𝑛𝑖𝑖). 𝑋𝑋 is the 

matrix represented by 𝑋𝑋 = (𝑋𝑋1 𝑋𝑋2  ⋯  𝑋𝑋𝑘𝑘) ∈  ℝ𝑑𝑑×(𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑘𝑘)(𝑑𝑑 ≫ ∑𝑛𝑛𝑖𝑖), and 𝑋𝑋� is the mean value of each row of 𝑋𝑋. 𝜆̃𝜆𝑖𝑖 
are the estimated eigenvalues, 𝜆̂𝜆𝑖𝑖 are the eigenvalues of 𝑆𝑆𝐷𝐷, tr(𝑆𝑆𝐷𝐷) is the trace of the dual covariance matrix 𝑆𝑆𝐷𝐷. 

 
ℎ�𝑖𝑖 =

𝑋𝑋 − 𝑋𝑋�

�(𝑛𝑛1 + 𝑛𝑛2 + ⋯+ 𝑛𝑛𝑘𝑘 − 1)𝜆̃𝜆𝑖𝑖
𝑢𝑢�𝑖𝑖 (2) 

 
ℎ�𝑖𝑖 are the estimated eigenvectors, 𝑢𝑢�𝑖𝑖 are the eigenvectors of 𝑆𝑆𝐷𝐷. The estimated eigenvalues 𝜆̃𝜆𝑖𝑖 and eigenvectors ℎ�𝑖𝑖 are 

calculated up to 𝑖𝑖 = min(𝑛𝑛1 − 2,𝑛𝑛2 − 2,⋯ ,𝑛𝑛𝑘𝑘 − 2,𝑑𝑑). The algorithm is summarized in Figure 1. 
Next, we will explain the simulation settings. First, we preset the eigenvalues following Yata & Aoshima [3]. For the 

first set of data, the preset eigenvalues are 𝜆𝜆1
(1) = 𝑑𝑑

4
5, 𝜆𝜆2

(1) = 𝑑𝑑
3
5, 𝜆𝜆3

(1) = 𝑑𝑑
2
5, 𝜆𝜆4

(1) = ⋯ = 𝜆𝜆𝑑𝑑
(1) = 1. For the second set of data, 

the preset eigenvalues are𝜆𝜆1
(2) = 𝑑𝑑

3
4, 𝜆𝜆2

(2) = 𝑑𝑑
1
2, 𝜆𝜆3

(2) = 𝑑𝑑
1
4, 𝜆𝜆4

(2) = ⋯ = 𝜆𝜆𝑑𝑑
(2) = 1. 

Subsequently, we will conduct numerical simulations to validate the accuracy of the proposed method. Independent 
pseudo-random normal distributions will be generated using covariance matrices based on predetermined eigenvalues. This 
approach allows us to create high dimensional data with small sample sizes. The dimensionality is set at 1000, 2000, 
and 3000, and the sample size varies from 10 to 120. For each set of conditions, 10 simulations will be performed, and the 
average of these 10 simulations will be adopted as the estimated eigenvalue. This simulation will be executed using both 
CPCA and NR-CPCA. Through this method, we aim to comprehensively evaluate the utility of common principal 
components in HDLSS data and examine the extent to which they are affected by noise. 

 
 

3. Results and Discussion 
In Figure 2, we compare the estimated eigenvalues calculated using NR-CPCA and CPCA across various dimensions 

and sample sizes. Specifically, it visualizes the ratio of the estimated eigenvalues to the true eigenvalues. The left column 
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displays the first, second, third, and fourth principal components for dimensions 𝑑𝑑 = 1000, 2000, and 3000, respectively. 
The horizontal axis of each graph represents the sample size, ranging from 𝑛𝑛 = 10 to 𝑛𝑛 = 120. The red lines show the results 
for NR-CPCA, while the black lines show the results for CPCA. The closer the ratio is to 1, the closer the estimated 
eigenvalues are to the true eigenvalues. Furthermore, by examining the variation in these values, we can assess the stability 
of the estimated eigenvalues as the sample size increases. 

 

 
Fig. 1: NR-CPCA Algorithm 

 
 

 
Fig. 2  Simulation Results 

The comparison between NR-CPCA and CPCA reveals that NR-CPCA exhibits lower variability in the estimated 
eigenvalues compared to CPCA. This observation aligns with the findings of Yata and Aoshima [3], demonstrating that using 
the NR method relatively reduces the variability of eigenvalues. This trend is particularly notable from the first to the fourth 
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principal components. Additionally, it has been observed that as the dimensionality of the data increases, the ratio between 
the set eigenvalues and the estimated eigenvalues increases for small sample sizes. Analysis reveals that the ratios computed 
by NR-CPCA are smaller than those computed by CPCA for all eigenvalues. This suggests that NR-CPCA provides more 
stable and reliable eigenvalue estimates. Moreover, as the sample size increases, NR-CPCA estimates the eigenvalues more 
accurately compared to CPCA. In conclusion, NR-CPCA not only reduces the variability in eigenvalue estimation but also 
demonstrates superior performance in providing more accurate eigenvalue estimates than CPCA. 

The results of this study demonstrate the usefulness of NR-CPCA in estimating eigenvalues of HDLSS multi-view data. 
Consequently, applying NR-CPCA enables eigenvalue estimation with mathematical guarantees for noise reduction 
compared to traditional methods. In this study, we selected 𝑤𝑤𝑖𝑖 = 1 (𝑖𝑖 ∈ {1,2,⋯ ,𝑘𝑘}) as the weight for the weighted average. 
Future research should explore optimizing these weights to potentially yield better estimates. Additionally, it will be crucial 
to evaluate and optimize parameters related to the degree of noise reduction and weighting methods. Furthermore, exploring 
how the results change by preparing eigenvalues in various settings will offer deeper insights into the method's reliability 
and applicability. Another important task for future research is to verify whether the analysis using real data can produce 
results equivalent to those obtained through simulations. 

 
4. Conclusion 

In this study, we propose the Noise Reduction Common Principal Component Analysis (NR-CPCA) method and verify 
its effectiveness. By integrating the noise reduction (NR) technique with Common Principal Component Analysis (CPCA), 
our proposed approach demonstrates greater resilience to noise in high-dimension, low-sample-size (HDLSS) data. Our 
research findings reveal that, irrespective of the sample size, NR-CPCA facilitates more stable and less variable eigenvalue 
estimation compared to traditional CPCA. This enhanced stability was consistently observed across various dimensions 
(1000, 2000, 3000) and a range of sample sizes (ranging from 10 to 120). 

However, validation based solely on simulations cannot fully capture the complexity of real-world data. Future research 
needs to apply NR-CPCA to various real-world datasets to further demonstrate its utility. Additionally, to further improve 
NR-CPCA, it is essential to evaluate its performance across different data distributions and noise levels. The impact of 
parameters such as the degree of noise reduction and the weighting method on NR-CPCA performance also needs to be 
investigated. Furthermore, it is necessary to explore the generalizability of NR-CPCA. At the same time, optimizing the 
computational cost and efficiency of NR-CPCA for handling high-dimensional data is crucial. This includes considering 
algorithm improvements and the introduction of parallel processing techniques to reduce computation time for high-
dimensional datasets. 

In conclusion, the proposed NR-CPCA offers researchers dealing with HDLSS multi-view data a more precise and 
reliable tool for dimensionality reduction. We anticipate that this method will propel research and development in fields that 
handle high-dimensional data, such as data science, biology, and neuroscience, thereby making a significant contribution to 
the advancement of these domains. 
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