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Abstract - In high-dimensional statistics and finance, accurately estimating covariance matrices is crucial, especially when dealing 

with noisy or perturbed data. Traditional estimators often falter in these scenarios, particularly in high-dimensional, low sample 

size contexts. To address these challenges, we propose a new method that combines quadratic shrinkage for eigenvalues with 

James-Stein Estimation (JSE) shrinkage for eigenvectors. This dual approach enhances the robustness and accuracy of covariance 

matrix estimation by effectively mitigating the impact of noise and preserving the matrix’s structural integrity. Our method 

significantly improves key metrics, including Tracking Error, Variance Forecast Ratio, and True Variance Ratio. These metrics 

consistently outperform those obtained with the standard JSE, particularly across various perturbation levels. The results 

underscore the potential of our approach to deliver more reliable and stable estimations. This makes it highly relevant for 

applications in finance and other fields where accurate covariance matrix estimation is essential. Our findings open further research 

into optimizing this combined shrinkage technique. 
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1. Introduction 
Covariance matrices are integral to various applications in statistics and machine learning. Many recent studies have 

focused on estimating covariance matrices through their eigenvectors. Estimating the covariance matrix becomes even more 

challenging in high dimensions when p >> n, where p is the dimension of the covariance matrix and n is the sample size. It 

becomes even more challenging as statistical noises and sampling errors often perturb these matrices. We propose a robust 

shrinkage estimator for the eigenvectors and eigenvalues of the sample covariance matrices in this high-dimensional-low 

sample setting. 

 Various studies have attacked the above problem in different directions. [3] studies a special set of covariance matrices 

called spiked covariance matrices where the sample eigenvalues follow the Marchenko-Pastur or “quarter-circle” law, shifted 

upwards, and the top eigenvectors are inconsistent. [3] also discusses various loss functions and derives unique admissible 

shrinkers of eigenvalues for each loss function. [2] expands these convergence limits of the individual shrinkers for all the 

loss functions to a generalized spiked covariance model where the perturbance is a positive semi-definite matrix. [2] also 

discusses the asymptotic eigenvector distributions for sample covariance matrices under general assumptions. [6] and [7] 

discuss the dispersion bias in the leading sample eigenvector in the factor-based covariance model. They propose James-

Stein for eigenvectors, a data-driven eigenvector shrinkage model, and show that the proposed eigenvector performs well in 

variance-minimizing problems compared to the eigenvalue shrinkage model. [5] studies the perturbation bounds of 

eigenvectors in low-rank incoherent matrices. More references on eigenvalue shrinkage are [1] [4] [8] [10]. All these models 

either discuss the shrinkage of eigenvalue or eigenvector in perturbed covariance matrices. We propose a method that finds 

the optimal shrinkage for both the eigenvector and eigenvalue for the underlying perturbed sample covariance matrix under 

general assumptions.  
The shrinkage estimators for both eigenvectors and eigenvalues have substantially impacted estimation errors in 

minimum variance portfolios separately. We use this to our advantage and get an optimal shrinkage estimator regardless of 

the loss function for both eigenvector and eigenvalue. We propose a data-driven approach and evaluate the performance 

using the metrics used in [7] and [5], like optimization bias and variance forecast ratio. We finally evaluate the forecast 

performance of the proposed estimator using a minimum variance portfolio. We compare our performance with the state-of-

the-art shrinkage estimators like [6], [12]. We can use this robust estimator in approximate factor model analysis, which has 

wide applications exploring correlation structure in finance, economics, genomics, etc, with various types and sources of 

perturbations in the underlying true covariance matrix 
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2. Main Model 
Consider the following data-generating process 

𝑦𝑡 = 𝐵𝑓𝑡 + ϵ𝑡 
 

where 𝑦𝑡 ∈ 𝑅𝑝, and 𝑓𝑡 ∈ 𝑅𝑘 is a vector of latent factors, B is matrix of corresponding factor loading coefficients, 

and 𝜖𝑡 is idiosyncratic part that factors cannot explain. The covariance of the model is 

𝛴 = 𝐵𝐵𝑇 + 𝛴𝜖 
• Σ is the covariance matrix of the observed data. 

• 𝐴 =  𝐵𝐵𝑇is the low-rank component representing the signal, with B as the factor loading matrix. 

• 𝛴𝜖  =  𝑣𝑎𝑟(𝜖) is the covariance matrix of the idiosyncratic errors, assumed to be sparse. It can be decomposed as 

𝛴𝜖  =  𝑆 +  𝑁 where S is a sparse matrix representing sparse contamination or systematic errors and N is a random 

matrix representing purely idiosyncratic noise or estimation error.  

 

The singular value decomposition of A can be written as 

𝐴 = ∑ σ𝑖𝑢𝑖 𝑣𝑖
𝑇

𝑟

𝑖=1

 

 

where r is the rank of A and the singular values are 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟  >  0. From [5] we have the eigenvalue gap 𝛾0 is 

defined as: 

         𝛾0  =   min
𝑖=1,...,𝑟

(σ𝑖 − σ𝑖+1)      (1) 

where 𝜎𝑖 are the singular values of the matrix A, with 𝜎𝑟+1 = 0. The perturbation 𝐸 = 𝑆 +  𝑁 is measured using the 

following rescaled norms:  

       𝜏0  =  max
 

(√𝑑2/𝑑1||𝐸||
1

, √𝑑1/𝑑2||𝐸||
∞

)     (2) 

 

where ||𝐸||
1

=  max
𝑗

∑ |𝐸𝑖𝑗|
𝑑1
𝑖=1 , and ||𝐸||

∞
=  max

𝑗
∑ |𝐸𝑖𝑗|

𝑑2
𝑖=1  

The perturbation of the eigenvectors (or singular vectors) is bounded asymptotically as given in [5]: 

max
𝑖=1,...,𝑟

||𝑢𝑖 −̃ 𝑢𝑖||
∞

≤ 𝐶(𝑟, μ0) (𝜏0/ 𝛾0) √𝑑1 

where: 

• 𝐶(𝑟, 𝜇0) is a constant dependent on the rank r and the coherence 𝜇0 of the matrix A. 

• 𝜇0 is the maximum coherences of the left and right singular vectors of A. 

 

Shrinkage for Leading Eigenvector and Eigenvalues 
Let S be the sample covariance matrix of a p-dimensional random vector based on n observations. The spectral decomposition 

of S is given by 

             𝑆 = ∑ 𝜆𝑖ℎ𝑖ℎ𝑖
𝑇𝑝

𝑖=1        (3) 

where 𝜆1 ≥ 𝜆2 ≥···≥ 𝜆𝑝  ≥  0 are the eigenvalues, and ℎ𝑖 are the corresponding orthonormal eigenvectors. Our interest lies 

in the leading eigenvalue 𝜆1 and the leading eigenvector  ℎ1 when this sample covariance matrix is perturbed. 

 

James-Stein Shrinkage for the Leading Eigenvector 
The James-Stein estimator (JSE) introduced in [6], [7], [11], is a shrinkage method designed to reduce the excess dispersion 

of the leading sample eigenvector in the high-dimension low-sample size (HL) regime. The JSE shrinks the entries of the 

leading eigenvector h1 toward their average:  

ℎ𝐽𝑆𝐸 = 𝑚(ℎ)1 + 𝑐𝐽𝑆𝐸(ℎ1 −  𝑚(ℎ)1),      (4) 

where 𝑚(ℎ) is the average of the entries of  ℎ1, 1 is the p-dimensional vector of ones, and the shrinkage constant 𝑐𝐽𝑆𝐸 is 

defined as:  

 𝑐𝐽𝑆𝐸  =  1 − 
𝜐2

𝑠2(ℎ1)
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where 𝑠2(ℎ1) is the sample variance of the entries of  ℎ1,: 

𝑠2(ℎ1) =
1

𝑝
∑(ℎ1𝑖 − 𝑚(ℎ))

2

𝑝

𝑖=1

 

and 𝜐2 is the average of the non-leading eigenvalues: 

𝜐2  =
𝑡𝑟(𝑆) − 𝜆1

𝑝 − 1
 

 

Ledoit-Wolf Shrinkage for the Leading Eigenvalue.  
The Ledoit-Wolf (LW) shrinkage estimator introduced in [9] shrinks the sample eigenvalues to improve the covariance 

matrix estimation. The LW shrinkage for the leading eigenvalue λ1 is given by 

                                                  𝜆1,𝐿𝑊 = (1 − 𝛼)𝜆1 + 𝛼𝜆𝑡𝑎𝑟𝑔𝑒𝑡,       (5) 

where 𝜆𝑡𝑎𝑟𝑔𝑒𝑡  is a target eigenvalue, often chosen as the average of the sample eigenvalues 𝜆𝑡𝑎𝑟𝑔𝑒𝑡  =  ∑ 𝜆𝑖
𝑝
𝑖=1 ,  and α is the 

shrinkage intensity, typically estimated by minimizing the mean squared error between the sample covariance matrix and the 

true covariance matrix. [12] extended this shrinkage estimator to the quadratic shrinkage estimator for the inverse 

eigenvalues, which is expressed as: 

                     𝛿𝑖
−1  =  (1 −

𝑝

𝑛
) 𝜆𝑖

−1 +  2 
𝑝

𝑛
 (1 −

𝑝

𝑛
) 𝜆𝑖

−1θ(𝜆𝑖
−1) +  (

𝑝

𝑛
)

2
𝜆𝑖

−1𝐴(𝜆𝑖
−1)  (6) 

Here,  𝜆𝑖 are the eigenvalues of the sample covariance matrix S, and 𝜃(𝜆𝑖
−1) is the smoothed Stein shrinker defined as:  

𝜃(𝜆𝑖
−1) =  

1

𝑝
 ∑

𝜆𝑗
−1

(𝜆𝑗
−1  −  𝜆𝑖

−1)
2

 + ℎ2𝜆𝑗
−2

𝑝

𝑗=1

 

The squared amplitude 𝐴2(𝜆𝑖
−1) is given by:   

      𝐴2(𝜆𝑖
−1) = [

1

𝑝
∑

𝜆𝑗
−1

(𝜆𝑗
−1 − 𝜆𝑖

−1)
2

 + ℎ2𝜆𝑗
−2

𝑝
𝑗=1 ]

2

  +  [
1

𝑝
∑

ℎ𝜆𝑗
−1

(𝜆𝑗
−1 − 𝜆𝑖

−1)
2

 + ℎ2𝜆𝑗
−2

𝑝
𝑗=1 ]

2

   

where h is the smoothing parameter, controlling the degree of smoothing applied to the Stein shrinker. 

 

The quadratic shrinkage method outperforms the linear shrinkage approach, particularly when the covariance matrix is 

perturbed due to noise or other external factors. The quadratic nature of the shrinkage allows the estimator to adapt better to 

the concentration ratio 
𝑝

𝑛
 , offering more accurate estimates of the true eigenvalues, thereby improving key metrics like the 

true variance ratio, variance forecast ratio, and reducing tracking errors. This improvement is especially significant when 

there is a high level of perturbation in the covariance matrix, as the quadratic shrinkage helps mitigate the impact of noise, 

leading to more robust portfolio optimization and risk management decisions. 

 

Let 𝛴𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 be the perturbed covariance matrix, which can be decomposed as:  

 𝛴𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑  =  𝑈𝛬𝑈𝑇  +  𝐸     (7) 

where U is the matrix of eigenvectors, 𝛬 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑝) is the diagonal matrix of eigenvalues, and E represents the 

perturbation or noise matrix. The eigenvalues 𝜆𝑖 of the perturbed covariance matrix 𝛴𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑  are shrunk using the quadratic 

shrinkage formula as given in (6). The eigenvectors 𝑢𝑖 of the perturbed covariance matrix 𝛴𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 are shrunk using the 

James-Stein shrinkage technique. The shrunken eigenvector  𝑢𝑖
𝑠ℎ𝑟 is given by (5). The final covariance matrix estimator 

𝛴𝑓𝑖𝑛𝑎𝑙 is constructed by combining the shrunken eigenvalues and eigenvectors: 

                                               𝛴𝑓𝑖𝑛𝑎𝑙 = ∑ δ𝑖   𝑢𝑖
𝑠ℎ𝑟 (  𝑢𝑖

𝑠ℎ𝑟)
𝑝
𝑖=1

𝑇
           (8)   

where 𝛿𝑖 are the shrunken eigenvalues obtained from the quadratic shrinkage method, and   𝑢𝑖
𝑠ℎ𝑟are the shrunken 

eigenvectors obtained from the James-Stein shrinkage. 
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3. Performance metrics 
We consider three performance metrics like [6] to compare the performance of the proposed estimator with the JSE 

estimator when the covariance matrices are perturbed. 

Variance Forecast Ratio (VFR). The Variance Forecast Ratio (VFR) is defined as the ratio of the estimated 

variance to the true variance of an optimized portfolio. It measures the accuracy of the variance forecast provided by the 

estimated covariance matrix. 

         𝑉𝐹𝑅(𝑤∗) =
𝑤∗𝑇

Σ̌𝑤∗

𝑤∗𝑇Σ𝑤∗
       (9) 

Here, 𝑤∗ is the optimized portfolio weight vector, Σ̌ is the estimated covariance matrix, and Σ is the true covariance matrix. 

The VFR is important because it assesses how well the estimated covariance matrix predicts the variance of the optimized 

portfolio. A VFR close to 1 indicates that the estimation is accurate, while deviations from 1 suggest under- or overestimation 

of portfolio risk. 

 

True Variance Ratio (TVR). The True Variance Ratio (TVR) is the ratio of the true variance of the true optimal 

portfolio to the true variance of the portfolio derived from the estimated covariance matrix. 

                                                     𝑇𝑉𝑅(𝑤∗)  =
𝑤𝑇Σ𝑤

𝑤∗𝑇Σ𝑤∗
       (10) 

Here, w is the true optimal portfolio weight vector. The TVR measures the efficiency of the optimized portfolio relative to 

the true optimal portfolio. A TVR greater than 1 indicates that the estimated portfolio is suboptimal, with a higher variance 

than the true optimal portfolio. 

 

Tracking Error (TE). Tracking Error (TE) quantifies the deviation of the returns of the estimated optimal portfolio 

from the returns of the true optimal portfolio. 

      𝑇𝐸2(𝑤∗) = (𝑤∗ − 𝑤)𝑇𝛴(𝑤∗  −  𝑤)     (11) 

TE is widely used in portfolio management to assess how closely the estimated portfolio tracks the true optimal portfolio. 

Lower TE indicates better performance in matching the true optimal portfolio’s returns. 

 

These evaluation metrics are essential for assessing the performance of covariance matrix estimators in the HL 

regime. They provide insights into the accuracy of variance forecasts, the efficiency of the estimated portfolio, and the 

overall tracking performance. In settings where perturbations or noise affect the covariance matrix, these metrics become 

even more critical for understanding the effectiveness of shrinkage techniques, such as the James-Stein estimator (JSE) 

for eigenvectors and quadratic shrinkage for eigenvalues. 

 

4. Experimental results 
 We set simulations to compare the proposed estimator with the James-Stein Estimator (JSE) and different shrinkage 

methods across various perturbation levels. The simulation parameters are: 

• The maximum number of assets 𝑝 =  500 

• The number of experiments to be run for each perturbation level 𝑚 =  10000 

• The number of time periods considered in the simulation 𝑛 =  252 

• Perturbation levels applied to the covariance matrix are given by 

𝑙 =  (0.0125, 0.0525, 0.1252, 0.2252). These values represent increasing levels of noise 

or perturbation in the covariance matrix. 

 

We simulate asset returns for each experiment, and the sample covariance matrix is computed. We compare the proposed 

covariance estimator with the JSE estimator by [7] and evaluated the metrics - tracking error, variance forecast ratio, and 

true variance ratio in table Table 1 using the (9), (10) and (11). All analytics show improvement across the different 

perturbation levels, with a particularly significant enhancement in the variance forecast ratio at all levels. However, no clear 

pattern emerges in the improvements as perturbation levels increase, suggesting a potential area for future research. 
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Table 1: Improvement of the proposed estimator over the James-Stein Estimator (JSE) in terms of Tracking Error, 

Variance Forecast Ratio, and True Variance Ratio, presented as percentage improvements. 

Perturbation level          Tracking error                 Variance forecast ratio                True variance ratio 

0.0125                                   4.2743                              28.0973                              4.2355 

0.0525                                   5.1159                              36.9158                              5.0705 

0.1252                                   4.1736                              37.2269                              4.0236 

0.2252                                   1.5526                              14.2780                              1.4939 

 

5. Conclusions 
Applying quadratic shrinkage to eigenvalues, combined with James-Stein shrinkage of eigenvectors, significantly 

enhances the accuracy and robustness of covariance matrix estimation, especially in high-dimensional, low-sample size 

scenarios. Our results show that this combined approach outperforms the James-Stein estimator alone, particularly in metrics 

like variance forecast ratio, true variance ratio, and tracking error. The quadratic shrinkage effectively mitigates the impact 

of noise and perturbations in the covariance matrix, leading to more reliable and stable estimations. This synergy between 

eigenvalue and eigenvector shrinkage improves the alignment with the true covariance matrix. It opens new avenues for 

future research in handling various perturbation models and developing adaptive shrinkage techniques. This method 

represents a significant advancement in the field, with substantial implications for high-dimensional statistical and financial 

applications. 
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