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Abstract - Low-cost air quality sensors (LCSs) have become increasingly vital in augmenting traditional monitoring networks,
particularly in regions constrained by limited reference-grade stations. Although their affordability and capacity for high-resolution
measurements enable better insights into pollution patterns, calibrating pollution-monitoring data from LCS to ensure reliability remains
a critical challenge. To addresses this, a two-phase framework was developed and applied to LCS-captured PM2.5 data from Chiang Mai,
Thailand, a region prone to elevated particulate matter from seasonal biomass burning. In the first phase, Inverse Distance Weighting
generated localized PM2.5 reference values in under-monitored areas, mitigating bias caused by distant reference stations. The IDW-based
errors, with a root mean squared errors (RMSE) of 37.15 µg/m³, were marginally lower than direct reference-based RMSE (37.40 µg/m³).
This minimal improvement underscores the limitations imposed by an insufficient number of reference monitors. In the second phase,
four calibration models: Multiple Linear Regression, a Generalized Additive Model, Random Forest, and a Long Short-Term Memory
(LSTM) neural network were evaluated to align the LCS readings with the interpolated reference. Meteorological and temporal factors
were incorporated into each model to account for both seasonal trends and sensor-specific bias. Results showed that all calibrated outputs
significantly better than the raw LCS data. Among them, the LSTM model consistently outperformed the other approaches by achieving
coefficients of determination (R²) as high as 0.96 and RMSE as low as 10 µg/m³. Overall, these enhancements were evident across
multiple seasons and locations, highlight the pivotal role of robust machine learning approaches and integrated spatial techniques to
enhance PM2.5 monitoring, ultimately contributing to more effective pollution management and public health protection. In future
research, we intend to explore alternative calibration strategies that do not rely on heavily on interpolation, particularly in resource-limited
contexts and potentially integrating additional data sources such as satellite aerosol readings. 
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1. Introduction
Low-cost air quality sensors (LCSs) offer a promising approach to supplement reference-grade air quality monitoring.

Recently, the adoption of LCSs has increased dramatically, driven by the need for monitoring pollution data with higher
temporal and spatial resolution amid rising concerns about air quality [1-3]. Their affordability and ease of deployment enable
the creation of denser pollution-monitoring networks that can provide more detailed insights into pollutant distribution and
human exposure [4-6]. Moreover, local ambient pollution monitoring with LCSs could potentially increase the general
awareness of the local citizenry towards pollution issues in their respective neighborhoods [7-8]. While LCSs can expand
air-monitoring coverage and accessibility, calibrating and validating their readings against reference-grade instruments
remains crucial to ensure accurate and reliable measurements [1-6]. This combination of LCS and conventional monitoring
approaches could provide more comprehensive air quality assessments and informed decision-making than by using the latter
exclusively.

In Thailand, filter-based inertial or gravimetric techniques along with a well-constructed size-selection inlet comprising
automatic beta ray attenuation or a tapered element oscillating microbalance are employed as a conventional reference
method for PM2.5 measurements. These methods are evaluated and indirectly operated by the Pollution Control Department
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(PCD) under the Ministry of Natural Resources and Environment [9]. However, the high costs associated with installing and
managing PM2.5 monitoring sensors coupled with their limited detection range pose significant challenges to calibrating LCS
data; these are exacerbated in areas where reference-grade monitors have been sparsely deployed or located far from sensor
sites. Moreover, the lack of nearby conventional monitoring stations can lead to spatial mismatches, representativeness errors,
and biased calibration results [2]. In Chiang Mai province, Thailand, PM2.5 poses a significant environmental and public
health challenge, particularly during the dry season spanning March to April; seasonal biomass burning in the surrounding
northern mountains contributes substantially to elevated levels of PM2.5, resulting in deteriorated air quality, reduced
visibility, and adverse health impacts [10]. Although Chiang Mai province encompasses a vast geographical area
(approximately 20,000 km2), only a few reference-grade pollution-monitoring stations have been deployed therein, with only
two such stations located within Chiang Mai city. This sparse distribution is insufficient to capture the extensive spatial
variability of air quality across such a large region, especially in rural and suburban areas, and also complicates the calibration
of data from the far more numerous LCSs. To address this, spatial interpolation methods have become essential. Of these,
Inverse Distance Weighting (IDW) is a widely used deterministic technique that can used to estimate unknown PM2.5
concentrations in unmonitored locations to construct more localized reference PM2.5 values for improving air quality
monitoring throughout the expansive Chiang Mai region.

In our study, we adopted a two-phase approach. In the first phase, we applied IDW to estimate PM2.5 concentrations and
create a localized reference framework tailored to the conditions at the LCS sites. By generating interpolated PM2.5 values
that reflect local variations more accurately, this approach mitigates the bias associated with distant reference monitors and
provides a robust baseline for calibration. The second phase involved calibrating the LCS data using this newly constructed
reference framework. To identify the most effective approach for enhancing LCS accuracy, we investigated employing
several advanced calibration methods, including Multiple Linear Regression (MLR), a Generalized Additive Model (GAM),
Random Forest (RF), and a Long Short-Term Memory (LSTM) neural network. The proposed methodology not only refines
the pollution-monitoring calibration process for under-monitored regions but also strengthens the overall utility of LCS
networks, ultimately contributing to more accurate air quality assessment and informed public health policies.

2. Materials and Methods
2.1. PM2.5 Observation and Reference Data

Hourly PM2.5 concentration data collected from January 1 to December 31, 2023, at two reference-grade PCD monitoring
stations, 35T/CM and 36T/CM, in Chiang Mai city were supplemented with data from four LCSs stations. The LCS devices,
which employ light-scattering techniques for real-time PM2.5 measurements, were deployed as part of the Air Quality
Awareness Raising under the American-Thai Collaboration (AQAAT) project. All four LCS stations are situated at varying
distances from the reference monitors: LCS04 in Chom Thong is approximately 60 km away, LCS10 in Chiang Dao is
around 90 km away, LCS13 in Mae Rim is roughly 11 km away, and LCS15 is approximately 4 km from the nearest reference
station (Figure 1). Calibration of the sensor data involved relative humidity (RH) and temperature as covariates, in
recognition of the significant influence of these two environmental factors on particulate matter measurements. Further
details regarding the LCSs employed in this study are available at https://aqaat.narit.or.th/aqaat/index.php.

Fig. 1: Location of LCS and reference (PCD) PM2.5 stations in the study area of Chiang Mai, Thailand.
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2.2. Spatial Interpolation Methods for PM2.5 Concentration Estimation
IDW is a representative conventional interpolation method for PM2.5 estimation and a widely used deterministic

technique for estimating unknown PM2.5 values by assigning weights inversely proportional to the distance from a known
data point [11]. This approach operates on the premise that locations closer to known measurements exert a greater influence
on the estimated values than those farther away [12]. Various researchers have employed IDW due to its speed, ease of use,
and ability to provide reasonable approximations of PM2.5 distributions across different spatial scales [4, 12]. However,
conventional IDW has inherent limitations, particularly when estimating local PM2.5 concentrations; the assumption of
constant distance decay may not adequately capture complex, short-term, or highly localized variations in PM2.5 levels
influenced by heterogeneous sources or environmental conditions [12]. Such assumptions can lead to inaccuracies when
applying IDW in areas with intricate spatial patterns or where conditions change rapidly over small distances. Despite these
challenges, IDW remains attractive for many applications because of its straightforward implementation and capacity to
generate quick, interpretable results [11]. The concept of IDW can be expressed as follows: 

 
                                                                                Ẑ =  ∑n

i = 1WiZi,                                                                  (1)
where Ẑ is the estimated value used for the target interpolation location, n is the number of reference (measured)
values near the target location, Zi represents the measured or known value of the ith reference (measured) value,
and Wi is the weight of the ith value defined as 

                                                                                Wi =  

1
di

휶

∑n
i = 1

1
di

휶
,                                                                (2)

where di is the distance between the target location and the ith point and α is a constant power used to adjust the
diminishing strength in the relationship with increasing distance [11].

2.3. Calibration Method Selection
Before calibration, data preprocessing was undertaken to eliminate outliers in the LCS PM2.5 concentration data.

Extremely high PM2.5 values can complicate calibration model development, so measurements exceeding three times the
scaled median absolute deviation (MAD) were excluded. Scaled MAD is computed as follows:

                                                   MAD =  k × median abs M − median M ,                                           (3)
where M denotes the observed PM2.5 concentration, median identifies the central tendency, and k is a scaling factor
denoted as

                                    k =  1

2 × erfcinv 3
2

≈ 1.4826,                                       
(4)

where erfcinv represents the inverse complementary error function.
Four regression algorithms were applied to calibrate the LCS data: MLR [6], GAM [13], RF [14], and LSTM neural

network [15]. The temperature (°C), relative humidity (%), and temporal features (month and time of day) were incorporated
as predictors. The time of day was stratified into morning (6:00 AM to 12:00 PM), noon (12:00 PM to 6:00 PM), evening
(6:00 PM to 12:00 AM), and night (12:00 AM to 6:00 AM). The estimated PM2.5 concentrations estimated via IDW at each
LCS site were used as the dependent variable. Model performance was evaluated using root mean square error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE), and the coefficient of determination (R²). Data
preprocessing, data analysis; MLR, GAM, RF and LSTM calculation; and model validation were conducted by leveraging
packages “gam,” “ggplot2,” “mgcv,” “tidyr”, “plotly”, “dplyr”, “caret”, “randomForest”, “keras” and “car” in the R (Version
4.3.3) statistical software package.
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3. Results and Discussion 
3.1. Seasonal Variation in PM2.5 Concentration

Hourly averaged PM2.5 concentration, RH, and temperature data from January 1, 2023, to December 31, 2023, were 
obtained from LCS stations in four different districts and two reference stations in Chiang Mai. The data were stratified 
into three seasons: summer (January to April), rainy (May to August), and winter (September to December). Notably, the 
LCS measurements exhibited the highest mean PM2.5 levels during the summer (96.8 ± 80.9 µg/m³), with a wide range 
(5.5–747.4 µg/m³) whereas the reference stations reported somewhat lower yet still elevated mean values (68.6 ± 47.9 
µg/m³). These elevated concentrations are primarily attributable to the dry weather conditions and pervasive biomass 
burning in northern Thailand during this period. In particular, intense biomass burning during April in Doi Luang Chiang 
Dao provided the highest PM2.5 measurements at the Chiang Dao LCS site. In contrast, both the LCS and reference stations
record substantially lower mean PM2.5 levels in the rainy and winter seasons, largely due to the mitigating effects of 
precipitation and cooler temperatures on particulate matter accumulation (Table 1).

Season-specific averages for temperature (approximately 26–28 °C in the summer) and RH (around 56–57% in the 
summer versus higher RH later in the year) further demonstrate the climatic influence on air pollution levels. Figure 2 
reveals a pronounced PM2.5 peak from late February through April across all monitoring sites, followed by a sharp decline 
during the rainy season and relatively moderate concentrations throughout the winter. These trends align with studies in 
other regions of Southeast Asia, which similarly report peak PM2.5 concentrations during dry and biomass-burning periods, 
followed by substantial reductions once seasonal rainfall commences [10, 16]. However, in contrast to some urban settings 
where vehicular emissions predominate year-round PM2.5 levels, the Chiang Mai data underscore the significant role of 
seasonal biomass burning in driving high pollution episodes [10]. Our observations extend and reinforce the importance of 
both meteorological conditions and local land-use practices (e.g., biomass burning) in shaping the ambient air quality 
profile for northern Thailand.

Table 1: Seasonal PM2.5 levels measured at the LCS and reference stations.
Summer Rainny WinterStation/

Variable Mean±SD Range Mean±SD Range Mean±SD Range
LCS
PM2.5 (µg/m3) 96.8 ± 80.9 5.5 – 747.4 14.5 ± 14.9 0.1 – 355.8 19.1 ± 14.4 0.1 – 282.6
T (°C) 26.2 ± 6.0 9.8 – 44.6 28.8 ± 3.7 21.7 – 43.3 26.4 ± 3.9 13.9 – 40.7
RH (%) 56.5 ± 16.0 15.2 – 98.0 72.2 ± 14.0 31.0 – 98.9 75.7 ± 13.1 38.4 – 99.0
Reference
PM2.5 (µg/m3) 68.6 ± 47.9 6.0 – 378.0 16.9 ± 10.5 1.4 – 88.0 16.0 ± 8.1 1.4 – 63.3

Abbreviation: SD, Standard deviation; T, temperature; RH, relative humidity. Seasons are defined as Summer (January to April),
Rainy (May to August), and Winter (September to December). 

Fig. 2: 24-hourly averaged PM2.5 concentrations measured at the reference (35T and 36T) and LCS (LCS04, LCS10, LCS13, and 
LCS15) stations from January 1, 2023, to December 31, 2023, in Chiang Mai, Thailand.
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3.2. IDW for Estimating Reference PM2.5 Values and Constructing the Reference Dataset
We employed IDW to estimate PM2.5 concentrations at unmonitored locations, thereby creating a more localized 

reference framework for subsequent analyses. Error metrics (RMSE, MAE, and MAPE) derived from the IDW-
interpolated PM2.5 values were compared with those obtained directly from reference station (Table 2). Overall, the IDW-
derived data were nearly identical to the reference-based values. For example, the all-stations average RMSE for IDW 
(37.15 µg/m³) was only marginally lower than that for the reference-based (37.40 µg/m³), indicating that IDW can 
effectively approximate PM2.5 in areas lacking real-time reference data. 

However, the small difference could be partially attributed to the limited number of reference stations available to 
construct the IDW surface. When reference data are sparse, interpolation may not fully capture local variability, potentially
constraining IDW’s accuracy. This limitation aligns with other studies suggesting that while IDW performs robustly under 
data-limited scenarios, the addition of more reference monitors or the use of advanced interpolation techniques can further 
improve accuracy of PM2.5 estimation [12, 17]. Despite these constraints, our findings demonstrate that IDW remains a 
practical method for expanding spatial coverage where standard monitoring infrastructure is inadequate. Our results are 
consistent with research indicating that IDW can maintain satisfactory performance even in settings characterized by sparse
reference-grade coverage, while contrasting with studies reporting greater gains from alternative methods when denser 
monitoring networks are available [17].

Table 2: Comparison of PM2.5 estimation using IDW interpolation versus reference measurements across the LCS stations.
IDW Interpolation Reference Data

Station RMSE 
(µg/m3)

MAE
(µg/m3)

MAPE
(%)

RMSE 
(µg/m3)

MAE 
(µg/m3)

MAPE 
(%)

Chiang Dao 62.21 27.37 73.4 62.55 27.41 75.1
Chom Thong 27.51 13.97 44.4 27.94 14.16 47.9
Mae Rim 22.92 11.04 37.2 23.13 11.25 37.9
Mueang Chiang Mai 19.19 9.91 33.2 19.24 9.96 33.4
All stations 37.15 15.62 47.3 37.40 15.65 48.4

3.3. Seasonal Variation-Based Model Calibration Performance Evaluation
To ensure a robust and reliable performance assessment, the calibration performances of the four models were

investigated using 10-fold cross-validation. MLR, GAM, RF, and LSTM were employed to capture the influence of seasonal
patterns on LCS measurements. Table 3 provides the results for performance metrics: R², RMSE, MAE, and MAPE before
and after calibration. Prior to calibration, the LCS data exhibited only moderate alignment with the reference-grade
measurements, with R² values ranging from 0.42 to 0.50 across all seasons and relatively high RMSE and MAE scores.
However, after calibration, all four models showed notable improvement. LSTM consistently achieved the highest R² values
(ranging from 0.75 to 0.86) and the lowest RMSE, thus illustrating the advantage of incorporating meteorological factors
(temperature, RH) and temporal variables (month and time of day) into the calibration process. For example, for the summer
season, LSTM attained an R² value of 0.86, an RMSE value of 18.48 µg/m³, and a MAPE decrease of 30%, thereby indicating
a significant enhancement over using the uncalibrated LCS PM2.5 data. Similar gains were observed for the rainy and winter
periods, albeit against lower overall PM2.5 concentrations.

These findings underscore the efficacy of advanced machine learning methods in adjusting for seasonal dynamics and
sensor-specific biases inherent in LCS data. By including meteorological and temporal covariates, models like LSTM can
capture variations that simpler regressions might overlook [6]. Previous studies in regions with marked seasonal trends in
PM2.5 (e.g., areas subject to biomass burning or monsoonal cycles) have reported comparable success when integrating
meteorological information into calibration frameworks [3, 10]. In contrast, research conducted in settings with more uniform
climate conditions or lower baseline pollution has sometimes found smaller improvements, suggesting that local
environmental factors significantly influence calibration outcomes [8].

The high R² values across multiple seasons bolstered by the 10-fold cross-validation design that mitigates overfitting
highlight the consistency of our calibration approach and help validate the generalizability of our results. Nevertheless, one
limitation of our study is the relatively sparse network of reference-grade monitors in Chiang Mai, which may constrain the
spatial accuracy of any calibration effort. Future work could involve expanding the reference network or exploring alternative
data-fusion approaches to capture finer-scale variations in air quality. Despite these constraints, the present results reveal that
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a careful combination of machine learning calibration methods, meteorological inputs, and validation procedures can
substantially enhance the reliability of LCS-derived PM2.5 measurements.

Table 3: Comparison of model fitting with 10-fold cross-validation for hourly PM2.5 concentrations calibrated using MLR, GAM, RF, 
and LSTM models

Season Scenario Model R2 RMSE
(µg/m3)

MAE
(µg/m3)

MAPE
(%) Equation

Before 
calibration - 0.50 62.29 32.35 47.08 -

MLR 0.76 23.56 15.30 25.59
PM2.5_REF =0.64(PM2.5_LCS)+1.58(T)+0.31(RH)+
1.33(Feb)+1.05(Mar)+10.97(Apr)+9.19(morning)
+10.5(noon)-0.08(evening)-52.51

GAM 0.77 22.83 14.62 24.81 -
RF 0.80 21.25 12.73 19.96 -

Summer
After 
calibration

LSTM 0.86 18.48 11.24 17.31 -
Before 
calibration - 0.47 11.05 7.35 48.33 -

MLR 0.60 6.41 4.22 26.88
PM2.5_REF = 0.40(PM2.5LCS)+0.11(T)+0.02(RH)-
6.47(Jun)-7.56(Jul)-4.98(Aug)+1.30(morning)
+0.89(noon)+1.66(evening)+10.46

GAM 0.65 6.09 4.00 26.04 -
RF 0.72 5.36 3.68 24.33 -

Rainy
After 
calibration

LSTM 0.77 4.84 3.39 22.50 -
Before 
calibration - 0.42 13.77 7.50 49.68 -

MLR 0.66 4.54 3.38 24.38
PM2.5_REF = 0.30(PM2.5_LCS)-0.14(T)-
0.03(RH)+0.76(Oct)+3.82(Nov)+5.78(Dec)
+0.57(morning)-0.43(noon)+2.98(evening)+13.25

GAM 0.69 4.33 3.21 22.89 -
RF 0.70 4.29 3.20 23.20 -

Winter
After 
calibration

LSTM 0.75 3.87 2.88 20.86 -

3.4. Post-Calibration LCS PM2.5 Data 
Figure 3 illustrates scatter plots comparing the post-calibration LCS PM2.5 measurements across the four stations at 

Chiang Dao, Chom Thong, Mae Rim, and Mueang Chiang Mai with the reference-grade readings from the PCD. The post-
calibration R² values ranged from 0.94 to 0.96, thereby indicating a strong correlation between the LCS and reference 
PM2.5measurements. Moreover, the RMSE values ranging from 10.92–13.84 µg/m³ confirm the effectiveness of the 
calibration procedure in reducing deviation from the reference readings. These high R² results underscore the success of 
integrating spatial interpolation based on IDW with a robust calibration model to mitigate systematic bias and location-
specific environmental variations.

The improvements in the error metrics (RMSE and R²) suggest that the post-calibration data distributions are more 
tightly aligned with the reference observations, reflecting greater consistency when measuring PM2.5 levels across diverse 
settings. In Mueang Chiang Mai, which is urbanized, the calibration yielded highly accurate results, likely due to a 
combination of denser emission sources and relatively closer proximity to the reference stations. However, in the suburban 
and rural locations (Chiang Dao and Chom Thong), the slightly wider distributions in the PM2.5 readings before calibration 
were substantially reduced after calibration. The reduced RMSE values across all of the LCS sites highlight the adaptability
of the calibration framework, even in areas with sparse monitoring coverage. These findings align with several studies in 
which the researchers documented significant improvements in LCS accuracy by applying spatially informed calibration 
methods, especially in heterogeneous regions with varying emission profiles [7]. However, some research conducted in less
topographically diverse or more uniformly urbanized regions has revealed more modest benefits from calibration, thereby 
suggesting that local emission patterns and the spatial density of reference monitors can influence outcomes [7, 8]. In the 
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context of the Chiang Mai region, incorporating IDW with an advanced calibration models appear especially valuable given
the patchy distribution of reference-grade stations and the stark contrasts between urban and suburban pollution sources.

R2 = 0.95, RSME =  13.23 R2 = 0.94, RSME =  13.84

R2 = 0.96, RSME =  10.92 R2 = 0.96, RSME =  10.99

Fig. 3: Comparison between the reference and corrected LCS PM2.5 data across all four stations

4. Conclusion
We successfully applied a two-phase approach to improve the accuracy of LCS PM2.5 measurements in a region with

limited reference station monitoring. In the first phase, IDW interpolation was adopted to construct a localized reference
framework, thereby mitigating spatial mismatches caused by distant reference-grade stations. In the second phase, calibration
models MLR, GAM, RF, and LSTM incorporating meteorological and temporal factors were applied to address sensor-
specific bias and seasonal variability. Combining IDW-based interpolation with an advanced calibration model substantially
enhanced the reliability of LCS PM2.5 measurements, as evidenced by high R² values up to 0.96 and RMSE values as low as
~10 µg/m³ relative to the reference-grade data. These improvements were evident across diverse conditions, from urban areas
like Mueang Chiang Mai to suburban and rural districts such as Chiang Dao and Chom Thong where localized burning and
other factors initially produced greater discrepancies. Although the sparse distribution of reference monitors presents
challenges, the proposed two-phase framework effectively reduces systematic errors and can adapt to variation in the local
environment. In practical terms, this methodology enables more accurate air quality assessments and supports evidence-based
interventions, even where reference stations are limited. In future research, we will consider alternative calibration strategies
that are designed to function with more distantly located reference monitors that potentially bypass the need for the initial
IDW step. Such an approach might involve combining machine-learning algorithms with supplementary data (e.g., satellite-
based emission inventories) to develop calibration models that directly accommodate sparse monitoring networks. Overall,
these findings highlight the potential of integrated spatial and calibration techniques to enhance PM2.5 monitoring, ultimately
contributing to more effective pollution management and public health protection.
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