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Abstract  This paper considers the determination of the optimal design and reliability acceptance sampling plans (RASPs) in the 

presence of dependent competing causes of failure. It is assumed that the items are subjected to a constant stress accelerated life test 

(CSALT) under a traditional Type-I censoring scheme. The potential failure time under each failure mode is assumed to follow a Weibull 

distribution. The dependence structure between the potential failure times is modeled using a Gumbel copula. Using a log-linear stress 

translation function, optimal design parameters are obtained by solving an optimization problem under budgetary constraints. In addition, 

optimal cost-based RASPs are developed under CSALTs for the specified producer's and consumer's risks.  
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1. Introduction 
 

Life testing plays an important role in reliability studies. In life testing, units are put into operation to obtain failure-time 

information to estimate the reliability of the products. For highly reliable products, the mean time to failure under normal 

operating conditions is often prohibitively long. Thus, accelerated life testing (ALT) was developed to obtain failure time 

information in a shorter duration to estimate the reliability of products in a reasonable time frame. In that life-testing scenario, 

the items are put on higher than usual stress levels to obtain failure-time information more quickly. A statistical model is 

used to fit the data at accelerated levels and then extrapolated to normal operating conditions. See Nelson [1], Bagdonavicius 

and Nikulin [2] for a detailed review on ALT. 

Among various mechanisms to perform such accelerated tests, CSALT experiments are very popular among reliability 

practitioners. In CSALT experiment involving 𝑘 stress levels, a sample of size 𝑛 is taken from a lot and the sample is divided 

into 𝑘 subgroups. For each subgroup, one pre-specified stress level is assigned and the life test is performed to obtain failure 

time information under the specified stress level. However, due to cost, time,  and other resource constraints, censored life 

tests are used to collect lifetime information at each stress level. Type I and Type II are the two most common types of 

censoring schemes used in life-testing experiments. If the life test is stopped at a prefixed time 𝜏, then it is known as Type-I 

censoring scheme, while if it is stopped after a fixed number of failures 𝑟 ≤ 𝑛, then it is known as Type-II censoring. 

There are a number of works on inferences for the lifetime distribution under ALT with different censoring schemes. 

For example, statistical inference of generalized gamma distribution under type-I censoring was studied by Fan and Yu [3]. 

Wang et. al [4] studied inference under progressive type-II censoring for the Weibull distribution. Lin et. al [5] studied under 

type-I hybrid censoring for the lifetime distribution of the log-location scale family. The optimal design of four levels of 

CSALT was studied by Yang [6]. Tang et al. [7] presented two alternative ways of planning CSALTs for the Weibull 

distribution. Guan et. al [8] considered the generalized exponential distribution. 

These works are considered for the single-failure mode items. However, due to the complex structure of modern 

products, the product may fail due to more than one failure mode. For example, in an automobile, the item fails due to a 

surface defect, interior defect, or both. Now, for exploring the failure mechanism of the product, we observe the time to 

failure along with the cause of failure. Such a model is known as the competing risk model, which is widely used in reliability 
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studies. There are many works on the analysis of competing risk data for different distributions under ALTs. For instance, 

Klein and Basu [9] applied CSALT for exponential distribution with competing risk under different censoring schemes. 

Pascual [10] considered the problem of planning CSALT for known shape parameter Weibull distribution with competing 

risk setup. Later, he discussed the problem of Weibull distribution for unknown shape parameters and log-normal distribution 

[11]. 

The main assumption of the above works is that all competing failure modes are independent. However, in practice, the 

failure modes may not be independent. The copula approach is one of the most popular methods for modeling dependent 

competing risks.  Using the copula method, the dependence structure between dependent competing failure modes can be 

described. Xu and Tang [12] used a coupla approach for dependent competing risk models under exponential distributions 

in CSALT. Wu et. al [13] studied for the Weibull distribution under progressive hybrid censoring.  

To the best of our knowledge, there has been no work on optimal ALT and RASP for dependent competing risk models 

under type-I censoring. In this work, we consider optimal design and reliability acceptance sampling plans with dependent 

multiple failure mode items under multiple constant-stress ALTs. Also, budget is an important consideration in conducting 

such a life test. Thus, we need to determine the optimal allocation of test units under different stress levels and inspection 

times 𝜏 under a pre-fixed experimental budget. We also discuss the development of RASPs by minimizing the total 

experimental cost. 

The rest of the paper is organized as follows. The model & assumptions are discussed in Section 2. Determination of 

optimal design and RASP are discussed in Section 3. Numerical results for both optimal design and RASP are discussed in 

Section 4. The conclusion and future studies are discussed in Section 5. 

 

2. The Model & Assumptions 
 

Let 𝑛 identical test units be selected from the lot and put on an ALT with 𝑘 elevated stress levels. Also, it is assumed 

that there are two competing causes of failure. At each stress level, the distribution of the item is derived in Section 2.1. After 

that, we present the background details along with the Fisher information matrix (FIM) in Section 2.2. 

 

2.1.  Distribution of lifetime 
 

 Let 𝑋𝑖𝑗 be the lifetime of the item due to 𝑗𝑡ℎ cause of failure at the stress level 𝑠𝑖. We assume that 𝑋𝑖𝑗  follows the 

Weibull distribution with cumulative distribution function (CDF), 

𝐹𝑖𝑗(𝑥) = 1 − exp [− (
𝑡

𝜆𝑖𝑗
)

𝜂𝑗

]  

and probability density function (PDF), 

𝑓𝑖𝑗(𝑥) =
𝜂𝑗

𝜆𝑖𝑗
(

𝑡

𝜆𝑖𝑗
)

𝜂𝑗−1

exp [− (
𝑡

𝜆𝑖𝑗
)

𝜂𝑗

] 

where 𝜆𝑖𝑗 > 0 is the scale parameter and 𝜂
𝑗

> 0 is a shape parameter, for 𝑖 = 1,2 … , 𝑘 and 𝑗 = 1,2. Now, we construct the 

reliability function of the items at any stress level 𝑠𝑖. As discussed earlier, the failure modes of the item are dependent, and 

the dependent structure is described by using the copula method.  

According to Sklar's theorem, the joint distribution function 𝐹𝑌 of 𝑌1 and 𝑌2 can be expressed in terms of its marginal 

distribution 𝐹𝑌1
  and 𝐹𝑌2

 and a copula function 𝐶(. , . ) such that  

𝐹𝑌(𝑦1, 𝑦2) = Pr(𝑌1 ≤ 𝑦1, 𝑌2 ≤ 𝑦2) = 𝐶(𝐹𝑌1
(𝑦1), 𝐹𝑌2

(𝑦2))     𝑦1 ≥ 0, 𝑦2 ≥ 0 

Likewise, the joint reliability function 𝑅𝑌 of 𝑌1 and 𝑌2 can be expressed in terms of its marginal reliability function and 

𝑅𝑌2
 and a copula function 𝐶̄(. , . ) such that 

𝑅𝑌(𝑦1, 𝑦2) = Pr(𝑌1 > 𝑦1, 𝑌2 > 𝑦2) = 𝐶̄ (𝑅𝑌1
(𝑦1), 𝑅𝑌2

(𝑦2))     𝑦1 ≥ 0, 𝑦2 ≥ 0 

           For simplicity, the Gumbel copula is considered. Then, the joint reliability function of 𝑌1 and 𝑌2 can be expressed 

as 

𝑅𝑌(𝑦1, 𝑦2) = 𝐶̄ (𝑅𝑌1
(𝑦1), 𝑅𝑌2

(𝑦2)) = exp [− {(− ln 𝑅𝑌1
(𝑦1))

𝜃
+ (− ln 𝑅𝑌2

(𝑦2))
𝜃

}
1/𝜃

] 
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   For this copula, the measure of association, Kendall's tau, is  

               𝜌 = 4 ∫ ∫ 𝐶(𝑢, 𝑣) 𝑑𝐶(𝑢, 𝑣)
1

0

1

0
− 1 =

𝜃−1

𝜃
                                                                                          (1) 

where 𝑢 = 𝐹1(𝑦1) and  𝑣 = 𝐹2(𝑦2)  (For more details, see Nelson [14]). 

Let 𝑋𝑖 be the lifetime of the item at the stress level 𝑠𝑖. Now, using Gumbel copula, the reliability function of the item at 

the stress level 𝑠𝑖 can be written as 

𝑅𝑖(𝑡) = 𝐶̄(𝑅𝑖1(𝑡), 𝑅𝑖2(𝑡)) =exp [− {(
𝑡

𝜆𝑖1
)

𝜃

+ (
𝑡

𝜆𝑖2
)

𝜃

}

1/𝜃

] 

  The scale parameter 𝜆𝑖𝑗 is related to the (possibly modified) stress level 𝑠𝑖 with a log-linear stress-translation function, 

i.e, we have 

𝜆𝑖𝑗 = 𝑎1𝑗 + 𝑎2𝑗𝑠𝑖 

As an example, when voltage is used as the applied stress, 𝑠𝑖 =𝑙𝑛 𝐸𝑖; whereas for temperature, 𝑠𝑖 = 1/𝑇𝑖. For 

convenience, the stress level is often standardized. Let 𝜉
𝑖
 denote the standardized stress variable given by 

                                                                             𝜉
𝑖

=
𝑠𝑖−𝑠0

𝑠𝑘−𝑠0
,    for 𝑖 = 0, … , 𝑘,                                                            (2) 

where 𝑠0 is the level of stress at normal use condition and 𝑠𝑘 is the highest level of stress. Therefore, 0 = 𝜉0 < 𝜉1 <
⋯ < 𝜉𝑘 = 1. Thus, the scale parameters are connected in a log-linear relationship to the standard stress level 𝜉

𝑖
.  The relation 

for the component 𝑗 at stress level 𝜉
𝑖
 to the parameter 𝜆𝑖𝑗 is taken as 

        𝜆𝑖𝑗 = 𝑎1𝑗 + 𝑎2𝑗𝑠𝑖 for  𝑖 = 1, … , 𝑘. 

      Let  𝐶𝑖 denote the indicator variable for the cause of failure, 𝐶𝑖 = 𝑗 means the product fails due to cause 𝑗. The 

joint PDF of (𝑋𝑖 , 𝐶𝑖) at the stress level 𝑠𝑖 is given by   

𝑓(𝑋𝑖,𝐶𝑖)(𝑡, 𝑗) =
𝜕𝐶̄(𝑅1(𝑡), 𝑅2(𝑡))

𝜕𝑅𝑗(𝑡)
𝑓𝑖𝑗(𝑡) = [(

𝑡

𝜆𝑖1
)

𝜃

+ (
𝑡

𝜆𝑖2
)

𝜃

]

1
𝜃

−1

(
𝑡

𝜆𝑖𝑗
)

𝜂𝑗𝜃−1
𝜂𝑗

𝜆𝑖𝑗
exp [− {(

𝑡

𝜆𝑖1
)

𝜃

+ (
𝑡

𝜆𝑖2
)

𝜃

}

1/𝜃

] 

 

2.2. Likelihood function 
 

Consider a random sample of size 𝑛 put on a life-testing experiment under the Type-I censoring scheme in a CSALT 

experiment. Therefore, 𝑛 units are divided into a 𝑘 subgroup with size 𝑛1, … , 𝑛𝑘, where 𝑛1 + ⋯ + 𝑛𝑘  = 𝑛. We assume that 

𝑛𝑖 units is put on a life test under stress 𝑠𝑖, 𝑖 = 1, … , 𝑘. The test is terminated after a pre-determined time point 𝜏 is reached. 

Let 𝑑𝑖𝑗 be the number of failures due to cause 𝑗 under stress level 𝑠𝑖. Let the observed lifetime data set due to the cause 𝑗 are 

Ɗ𝑖𝑗 = {𝑡𝑖𝑗1, 𝑡𝑖𝑗2, … , 𝑡𝑖𝑗𝑑𝑖𝑗
}. The observed data set under the stress level 𝑠𝑖 is Ɗ𝑖 = {Ɗ𝑖1, Ɗ𝑖2} and total observed data under 

this life-testing experiment is Ɗ = {Ɗ1, Ɗ2, … , Ɗ𝑘}. We assume that the vector of parameters is 𝝍 =

(𝑏11, 𝑏12, 𝑏21, 𝑏22, 𝜂
1

, 𝜂
2

, 𝜃). For the observed data Ɗ𝑖 at the stress level𝑠𝑖, the likelihood function (l.f.) can be written as 

𝐿𝑖(𝝍 | Ɗ𝑖) = [(
𝑡𝑖𝑗𝑘

𝜆𝑖1
)

𝜃

+ (
𝑡𝑖𝑗𝑘

𝜆𝑖2
)

𝜃

]

1
𝜃

−1

(
𝑡𝑖𝑗𝑘

𝜆𝑖𝑗
)

𝜂𝑗𝜃−1
𝜂𝑗

𝜆𝑖𝑗
exp [− {(

𝑡𝑖𝑗𝑘

𝜆𝑖1
)

𝜃

+ (
𝑡𝑖𝑗𝑘

𝜆𝑖2
)

𝜃

}

1/𝜃

] 

 

The log l.f. at the stress level 𝑠𝑖 is given by 

𝑙𝑖(𝝍 | Ɗ𝑖) =𝑙𝑛 𝐿𝑖(𝝍 | Ɗ𝑖)  
The total l.f. can be written as 

𝐿(𝝍 | Ɗ) = ∏𝑙𝑛 𝐿𝑖(𝝍 | Ɗ𝑖)

𝑘

𝑖=1

  

The total log l.f. is 

𝑙(𝝍 | Ɗ) =𝑙𝑛 𝐿(𝝍 |Ɗ) = ∑ 𝑙𝑖(𝝍 | Ɗ𝑖)

𝑘

𝑖=1

   

Let 𝐼(𝝍) denotes the FIM. By definition, we have 
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𝐼(𝝍) = 𝐸 [−
𝜕2𝑙(𝝍 | Ɗ)

𝜕𝝍𝜕𝝍′ ] = 𝐸 [− ∑
𝜕2𝑙𝑖(𝝍 | Ɗ𝑖)

𝜕𝝍𝜕𝝍′

𝑘

𝑖=1

] = ∑ 𝐼𝑖(𝝍)

𝑘

𝑖=1

= ∑ 𝑛𝜋𝑖Ƒ𝑖(𝝍)

𝑘

𝑖=1

 

where Ƒ𝑖(𝝍)  is the FIM for one item at the stress level 𝜉
𝑖
, for 𝑖 = 1, … , 𝑘, 𝝍′ is the transpose of 𝝍 and 𝜋𝑖 = 𝑛𝑖/𝑛, for 𝑖 =

1, … , 𝑘, i.e., 𝜋𝑖 is the proportion of samples put in the life test at the stress level 𝜉
𝑖
. Clearly, 0 ≤ 𝜋𝑖 ≤ 1. The decision variable 

vector under this life testing plan is denoted by 𝜻 = (𝑛, 𝝅, 𝝃, 𝜏), where 𝝅 = (𝜋1, … , 𝜋𝑘) with 𝜋1 + ⋯ + 𝜋𝑘 = 1and 𝝃 =

(𝜉
1

, … , 𝜉
𝑘−1

, 1). 

 

3. Optimal design & RASP 
 

Here, we propose the optimal design and RASP setup.  

 

3.1. Optimal design 
 

Several design criteria have been proposed in the context of finding the optimal life testing plan. In this paper, we 

find the optimal design parameter 𝜻 by minimizing the variance of the system reliability function at a pre-specified time 

point 𝑡0 under a certain budget constraint 𝐶𝐵. Let 𝐶(𝜻) denote the TC of the life test experiment. The TC of the experiment 

can be taken as 

𝐶(𝜻) = 𝑛𝐶𝑠 + 𝐶𝑑𝐸[𝐷] + 𝐶𝑡𝜏 

where 𝐶𝑠 is the cost per item, 𝐶𝑑 is the cost per failure item, and 𝐶𝑡 is the cost per unit of time. 𝐸[𝐷] denotes the expected 

number of failures during the life test and can be defined as 𝐸[𝐷] = ∑ 𝑛𝑖𝑅𝑖(𝜏)𝑘
𝑖=1 . Therefore, our problem is as follows: 

minimize 𝜙(𝜻) =var(𝑅(𝑡0))  

subjected to 

  𝐶(𝜻) ≤ 𝐶𝐵 

 0 ≤ 𝜋𝑖, 𝜉𝑖 ≤  1, 𝑖 = 1, … , 𝑘, 𝑛is positive a integer value and 𝜏 > 0 

where var(𝑅(𝑡0)) = 𝛻𝝍𝑅(𝑡0)′[𝐼(𝝍)]−1𝛻𝝍𝑅(𝑡0), where 𝛻𝝍𝑅(𝑡0) = (
𝜕𝑅(𝑡0)

𝜕𝑏11
,

𝜕𝑅(𝑡0)

𝜕𝑏12
, 0,0,

𝜕𝑅(𝑡0)

𝜕𝜂1

𝜕𝑅(𝑡0)

𝜕𝜂2

𝜕𝑅(𝑡0)

𝜕𝜃
). Solving the 

above problem, we get the optimal designing parameter 𝜻∗. Now, we provide upper bounds of 𝑛, 𝜏. Let 𝑛𝐵 and 𝜏𝐵 be the 

upper bound of 𝑛, 𝜏 respectively. 𝜻∗ = (𝑛∗, 𝜋∗, 𝜉∗, 𝜏∗) be the optimal sampling parameters. Since all costs 𝐶𝑠, 𝐶𝑑 and 𝐶𝑡 are 

positive, we get, 

𝐶𝐵 ≥  𝐶(𝜻∗
) ≥ 𝑛∗𝐶𝑠 + 𝐶𝑡𝜏∗ ≥ 𝑛∗𝐶𝑠                                                                                                            (3)                                                                                                 

 From (3), we get 𝑛∗ ≤
𝐶𝐵

𝐶𝑠
. Therefore 𝑛𝐵 = ⌊

𝐶𝐵

𝐶𝑠
⌋ , where ⌊𝑦⌋ is the greatest integer less than or equal to 𝑦. Also, from 

(3), we get 𝜏∗ ≤
𝐶𝐵−𝐶𝑠𝑛∗

𝐶𝑡
. Therefore 𝜏𝐵 =

𝐶𝐵−𝐶𝑠𝑛∗

𝐶𝑡
. 

 

3.2. Sampling plan 

 

 Consider that a sample of size 𝑛 is selected from a lot. The items are divided into 𝑘 pre-specified subgroups with the 

proportion 𝜋1, … , 𝜋𝑘, where ∑ 𝜋𝑖
𝑘
𝑖=1 = 1. The lifetime quantile 𝑡𝑝 corresponding to a given fraction of nonconforming item 

p under normal conditions satisfies the following equation: 

              1 − 𝑝 = exp [− {(
𝑡

𝜆𝑖1
)

𝜃
+ (

𝑡

𝜆𝑖2
)

𝜃
}

1/𝜃

]                                                                                 (4) 

The consumer accepts the lot when the reliability of the product at a specified time 𝑡𝑝 is greater than a specified required 

reliability 𝑅𝑐. Let 𝑅̂(𝑡𝑝) be the estimated reliability at normal conditions. Therefore, the lot is accepted if 𝑅̂(𝑡𝑝) > 𝑅𝑐 and 

the lot is rejected 𝑅̂(𝑡𝑝) ≥ 𝑅𝑐. 

In order to design RASP for CSALT under the type-I censoring scheme, we need to derive the sample size 𝑛, the 

proportion of the sample 𝜋𝑖 at each stress level 𝑠𝑖, for 𝑖 = 1, … , 𝑘, the time duration 𝜏 and 𝑅𝑐. First, we derive the expression 

of 𝑛 and 𝑅𝑐 such that the plan meets the producer's risk 𝛼 and consumer's risk 𝛽. According to a mutual agreement between 
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the producer and the consumer, the lot is considered acceptable if 𝑝 < 𝑝𝛼 and the lot is considered rejectable if 𝑝 > 𝑝𝛽 . Let 

𝑡𝑝𝛼
 and 𝑡𝑝𝛽

 be the lifetime quantiles corresponding to given nonconforming item 𝑝𝛼 and 𝑝𝛽, respectively. Using equation 

(4), the lot is accepted when 𝑡p > 𝑡𝑝𝛼
 and rejected when 𝑡𝑝 ≤ 𝑡𝑝𝛽

. Now, the producer's risk 𝛼 is defined as the probability 

of a good lot being mistakenly rejected i.e,  

1 − 𝛼 =Pr[𝑅̂(𝑡𝑝) > 𝑅𝑐| 𝑡𝑝 = 𝑡𝑝𝛼
]   

 and the consumer's risk 𝛽 is defined as the probability of a bad lot being mistakenly accepted, i.e,  

𝛽 =Pr [𝑅̂(𝑡𝑝) > 𝑅𝑐| 𝑡𝑝 = 𝑡𝑝𝛽
] , 

where 𝑅̂(𝑡𝑝) = exp [− {(
𝑡𝑝

𝜆̂01
)

𝜂̂1𝜃̂
+ (

𝑡𝑝

𝜆̂02
)

𝜂̂2𝜃̂
}

1

𝜃̂

], 𝜂̂
1
, 𝜂̂

2
 and 𝜃 be the MLEs of 𝜂

1
, 𝜂

2
 and 𝜃 respectively, 𝜆̂01 =𝑒𝑥𝑝 (𝑏̂11) 

and 𝜆̂02 =𝑒𝑥𝑝 (𝑏̂12)are the MLEs of 𝜆01 and 𝜆02 respectively. Therefore, 𝝍̂ = (𝑏̂11, 𝑏̂12, 𝑏̂21, 𝑏̂22, 𝜂̂
1

, 𝜂̂
2

, 𝜃̂) is the MLE of 

𝝍. The asymptotic distribution of 𝝍̂ follows multivariate normal distribution with mean 𝜓 and variance-covariance matrix 

𝐼−1(𝜓). By using the delta method, 𝑅̂(𝑡𝑝) follows normal distribution with mean 𝑅(𝑡𝑝) and variance 𝑉 =var(𝑅(𝑡𝑝)). 

Let 𝑅𝛼 and 𝑅𝛽be the values of 𝑅(𝑡𝑝), and 𝑉𝛼 and 𝑉𝛽be the values of 𝑉 when 𝑡𝑝 = 𝑡𝑝𝛼
and 𝑡𝑝 = 𝑡𝑝𝛽

, respectively. From 

the asymptotic property of MLE, we get 

Pr [𝑍 >
𝑅𝑐 − 𝑅𝛼

√𝑉𝛼

]= 1 − 𝛼 

and 

Pr [𝑍 >
𝑅𝑐 − 𝑅𝛽

√𝑉𝛽

]= 𝛽 

 From the above two equations, we obtain 

                                                          𝑅𝑐 =
𝑅𝛼𝑧1−𝛼√𝑉𝛼−𝑅𝛽𝑧𝛽√𝑉𝛽

𝑧1−𝛼√𝑉𝛼−𝑧𝛽√𝑉𝛽
                                                                    (5) 

 and  

𝑛 = (
𝑧1−𝛼√𝑉𝛼 − 𝑧𝛽√𝑉𝛽

𝑅𝛼 − 𝑅𝛽
)

2

 

 where 𝑧𝛾 is the 𝛾 upper percentile of a standard normal distribution. 

For given 𝛼, 𝛽, 𝑝𝛼 and 𝑝𝛽,  a constraint-optimization problem can be written as 

Minimize  𝐶(𝜻) 

subject to  

  𝑛 = (
𝑧1−𝛼√𝑉𝛼−𝑧𝛽√𝑉𝛽

𝑅𝛼−𝑅𝛽
)

2

 

  0 ≤ 𝜋𝑖, 𝜉𝑖 ≤  1, 𝑖 = 1, … , 𝑘, 𝑛 is positive a integer value and 𝜏 > 0 

Solving the above problem, we get the optimal designing parameter 𝜻∗ and using equation (5), we get the acceptance 

limit 𝑅𝑐.  

 

4. Numerical Results 
 

Here we consider Nelson's [1] example of a Class-B motor insulation system having three failure modes, namely, turn, 

phase and ground. In that example, 40 items are put in an ALT experiment where the temperature is the only stress variable. 

Forty items are divided into 4 subgroups with equal sizes. Therefore 10 items are put on a life test under temperatures 150°C, 

170°C, 190°C and 220°C. It is observed that the number of breakdowns due to phase is negligible. Therefore, we consider 

only two failure modes, turn and ground. The data is divided by 100 and fits into the Weibull distribution. For 𝜃 = 1, the 

MLE are  𝑏̂11 = 4.458, 𝑏̂12 = 4.255, 𝑏̂21 = −4.881, 𝑏̂22 = −4.514, 𝜂̂
1

= 5.445 and 𝜂̂
2

= 2.432. 
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In this article, it is assumed that items are having only two failure modes, turn and ground put in a temperature-

accelerated life testing experiment. The usage and maximum allowable temperature are assumed to 130°C and 220°C 

respectively. We consider different values of 𝜌 to represent different dependence structures of turn and ground failure modes.  

When 𝜌 = 0,1/2,2/3, the copula parameter 𝜃 = 1,2,3 using equation (1), where 𝜌 = 0 represents the independent case. 

From equation (2), we can write,  
1

𝑇𝑖
=

1

130
+ 𝜉𝑖 × (

1

230
−

1

130
) 

 

Example 1: The cost components are taken as 𝐶𝑠 = 0.1, 𝐶𝑑 = 0.1, 𝐶𝑡 = 0.5 and 𝐶𝐵 = 10. The variance of the reliability 

function is calculated at 𝑡0 = 30 under normal operating conditions. The optimal sample size 𝑛∗, optimal inspection time, 

𝜏∗ and for low-stress level, optimal proportion of the sample, 𝜋1
∗and optimal standardized stress level 𝜉

1

∗
 are provided in 

Table 1. For high-stress levels, the optimal proportion of sample 𝜋2
∗ = 1 − 𝜋1

∗ and the optimal standardized stress level 

𝜉
2

∗
= 1 by definition. The variance of the reliability function at optimal design parameters 𝜻∗

= (𝑛∗, 𝝅∗, 𝝃∗, 𝜏∗), where 𝝅∗ =

(𝜋1
∗, 1 − 𝜋1

∗) and 𝝃∗
= (𝜉1

∗, 1) are given in Table 1. Also, the optimal sample size 𝑛1
∗ = 𝑛∗𝑝1

∗ and optimal temperature 

𝑇1
∗ at low stress level are also given in Table 1. For high-stress level, the temperature is always 230° 𝐶 and the optimal 

sample size is 𝑛2
∗ = 𝑛∗ − 𝑛1

∗. 

 
Table 1: Optimal design for different values of 𝜃 

 

𝜃 𝑛∗ 𝜋1
∗ 𝜉

1

∗
 𝜏∗ 𝑛1

∗ 𝑇1(°𝐶) 𝜙(𝜁∗) × 102 

1 25 0.764 0.311 9.200 19 150.32 9.773 

2 25 0.782 0.316 9.203 20 150.70 9.181 

3 25 0.784 0.329 9.116 20 151.69 8.913 

 

Next, we consider the effect of parameters on optimum solution. The effect of the parameters 𝐶𝑠, 𝐶𝑡 and 𝐶𝐵 are given in 

Tables 2, 3 and 4, respectively.  

 
Table 2: Optimal design for different values of 𝜃 and 𝐶𝑠 

 

𝐶𝑠 𝜃 𝑛∗ 𝜋1
∗ 𝜉

1

∗
 𝜏∗ 𝑛1

∗ 𝑇1(°𝐶) 𝜙(𝜁∗) × 102 

0.1 1 47 0.780 0.313 9.155 37 150.47 6.723 

2 47 0.780 0.313 9.155 37 150.47 6.723 

3 47 0.781 0.327 9.014 37 151.54 6.548 

0.2 1 17 0.765 0.313 9.240 13 150.47 11.818 

2 17 0.783 0.316 9.251 13 150.70 11.104 

3 17 0.785 0.329 9.188 13 151.69 10.766 

 

In Table 2, it is observed that the optimal parameters except 𝑛∗ do not change with 𝐶𝑠. The optimal sample size decreases 

with 𝐶𝑠 as expected. Therefore, the variance of the reliability function increases with 𝐶𝑠. However, in Tables 2 and 3, it is 

seen that all optimal parameters are affected by 𝐶𝑡 and 𝐶𝐵. The optimal inspection time 𝜏∗ decreases with 𝐶𝑡. Due to prefixed 

experimental budget 𝐶𝑡, the upper bound of 𝜏 decreases. Therefore, it may be noted that 𝜏∗ decreases with 𝐶𝑡. Also, in short 

time for better inference, we need to conduct  the life test test with higher stress. Therefore, 𝜉
1

∗
 increases with 𝐶𝑡. Also, 

when 𝐶𝑡 = 0.1, it is observed that 𝜉
1

∗
= 0 and 𝜋1

∗ = 1. 
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Table 3: Optimal design for different values of 𝜃 and 𝐶𝑡 

 

𝐶𝑡 𝜃 𝑛∗ 𝜋1
∗ 𝜉

1

∗
 𝜏∗ 𝑛1

∗ 𝑇1(°𝐶) 𝜙(𝜁∗) × 102 

0.1 1 30 1 0 34.489 30 130 5.237 

2 30 1 0 34.489 30 130 5.167 

3 30 1 0 34.489 30 130 4.985 

1 1 16 0.692 0.454 4.948 11 161.91 16.450 

2 16 0.716 0.456 4.959 11 162.14 15.341 

3 16 0.719 0.469 4.930 12 163.29 14.865 

 
Table 4: Optimal design for different values of 𝜃 and 𝐶𝐵 

 

𝐶𝐵 𝜃 𝑛∗ 𝜋1
∗ 𝜉

1

∗
 𝜏∗ 𝑛1

∗ 𝑇1(°𝐶) 𝜙(𝜁∗) × 102 

5 1 11 0.698 0.438 5.259 8 160.58 19.236 

2 12 0.713 0.459 4.485 9 162.41 17.932 

3 11 0.723 0.455 5.230 9 162.05 17.393 

15 1 36 0.826 0.229 14.182 30 144.37 6.520 

2 39 0.829 0.234 13.121 32 144.72 6.363 

3 39 0.830 0.246 12.991 32 145.56 6.199 

 

Example 2: Next we study the RASP for given 𝑝𝛼 = 0.05 and 𝑝𝛽 = 0.2. The value of other components are same as in 

Example 1. Now for 𝛼 = 0.05, 0.1 and 𝛽 = 0.05, 0.1, the optimal RASP are tabulated in Table 5. It is seen that the sample 

size decreases with both 𝛼, 𝛽. Also it is seen that the total experimental cost at optimal design decreases with 𝜃. The 

acceptance limit 𝑅𝑐 increases with 𝜃. 

 
Table 5: Optimal RASP for different values of 𝜃 and (𝛼, 𝛽) 

 

𝛼 𝛽 𝜃 𝑛∗ 𝜋∗ 𝜉
∗
 𝜏∗ 𝑛1

∗
 𝑇1(°𝐶) 𝑅𝑐 𝑇𝐶(𝜻∗) 

0.05 0.05 

1 142 0.916 0.080 28.312 130 134.68 0.868 45.908 

2 159 0.859 0.144 21.138 137 138.68 0.872 45.598 

3 156 0.857 0.161 20.246 134 139.78 0.88 44.803 

0.05 0.1 

1 126 0.846 0.164 18.561 107 139.98 0.876 37.039 

2 127 0.829 0.187 17.11 105 141.5 0.881 36.481 

3 125 0.829 0.204 16.452 103 142.65 0.889 35.757 

0.1 0.05 

1 134 0.862 0.143 20.991 116 138.61 0.858 40.124 

2 136 0.845 0.164 19.488 115 139.98 0.862 39.744 

3 134 0.845 0.181 18.737 113 141.1 0.871 39.053 

0.1 0.1 

1 106 0.825 0.190 16.659 87 141.7 0.867 31.715 

2 106 0.825 0.190 16.659 87 141.7 0.872 31.715 

3 104 0.815 0.227 15.012 85 144.23 0.88 30.592 
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5. Conclusion 
 

 This work considered the determination of the optimal design of the life testing experiment for dependent competing 

risk data when the items are put on CSALT under type-I censoring. We have also considered the determination of RASP 

under this setup. In this paper, we have considered Weibull distribution. However, the proposed method can be applied for 

other lifetime distributions. Also, in this work, we considered Gumbel copula to model the dependency of the competing risk 

data. We can use other Archimedean copulas like Clayton copula, Pareto copula, etc. Also for simplicity, we considered 

competing risk data with two failure modes. It can be extended to more than two failure modes (see [15]). 
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