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Abstract - This paper addresses the linear prediction problem for stationary random fields with a nonsymmetrical half-plane past 
(NSHP) framework. We establish an explicit autoregressive series representation for the multi-step ahead linear predictor and derive 
the necessary and sufficient conditions for its mean square convergence. Additionally, recursive relations between prediction 
coefficients for the infinite past predictor are presented, facilitating explicit computation of multi-step coefficients. The practical 
applicability of the proposed methodology is demonstrated through an analysis of an academic example and a lattice dataset 
representing poverty levels across Texas counties, modelled using a 2D spatial autoregressive model.
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1 INTRODUCTION

Spatial prediction methods have seen significant advancements due to high demand in fields like agriculture,
climatology, ecology, econometrics, geology, medical studies, oil prospecting, and water pollution analysis, where data is
typically available at specific locations [14]. A widely used approach is kriging, a geostatistical linear least squares estimation
method for predicting natural phenomena at unsampled locations as a weighted average of nearby observations. Determining
the weights requires specifying a parametric covariance model, which depends on the covariances between observed and
interpolated locations. A critical step involves fitting the experimental variogram with a suitable parametric model, as
described in [1]. However, selecting a covariance model is often subjective [2] and may result in biased predictions if the
model is mis specified. Nonparametric methods for estimating covariance functions have been explored [3,4], but they remain
challenging, particularly when the assumption of uniform dependence across points does not hold for irregular data. Thus,
developing prediction methods with minimal assumptions on the covariance structure remains a significant challenge in
spatial statistics.

In this paper, we address the prediction of stationary random fields using nonsymmetrical half-plane pasts. Specifically,
we consider the structure of random processes over S ⊆  ℤ2  (2-D discrete random fields) and formulate the 2-D linear
prediction problem analogous to the Wiener-Kolmogorov framework for 1-D processes. Unlike the 1-D case, where the
notions of "past" and "future" are naturally defined, 2-D random fields lack a universal ordering, requiring a specific
definition of "past" and "future". For instance [6,7] defined the predictor support as a nonsymmetrical half-plane (NSHP)
and derived a Wold-type decomposition for stationary random fields. They also developed the associated spectral theory.
Building on this, [5] demonstrated that multiple total-order and NSHP definitions lead to a countably infinite Wold-type
decomposition. In [8], we investigated linear prediction for stationary random fields with NSHP and established an explicit
autoregressive series representation for the best multi-step ahead predictor. We also provided necessary and sufficient
conditions for the mean square convergence of these series. 
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2 AUTOREGRESSIVE REPRESENTATION OF THE MULTI-STEP AHEAD LINEAR PREDICTOR

The multi-step ahead prediction problem of stationary random fields has been studied by when the third quadrant is used
as the past. We extend their pioneering work to random fields with nonsymmetrical half-plane past. Let X s, t ; s, t ∈ ℤ2 be
a PND stationary random field. The totally ordered NSHP support is a favorable type of support in the sense that it yields a
natural extension to the 1-D results; this fact has been shown in [6,7]. In what follows, we assume all definitions and theorems
are stated with respect to the total order and nonsymmetrical half-plane (NSHP); and the 2-D random field X s,t . First, we
introduce some basic definitions related to the NSHP prediction scheme. Next, we state the 2-D Wold-type orthogonal
decomposition theorem.

Definition 1 ([6]).  We call a nonsymmetrical half-plane past (NSHP) any subset S of ℤ2 satisfying S stable
under addition; S ∪ − S = ℤ2; S ∩ − S = 0, 0 .

The NSHP support, S, results from the total-order definition (1a). The total order is defined as a raster-scan:
top-to-bottom column-after-column from left to right. In mathematical terms:

s1,t1 < s2,t2   iff s1,t1 ∈ { k,l k = s2,l < t2} ∪ { k,l k < s2, − ∞ < l < ∞ }     (1a)

and the order ≤  is naturally defined by 
s1,t1 ≤ s2,t2 iff s1,t1 < s2,t2  or s1,t1 = s2,t2                 (1b)

which coincides with the lexicographic order. Figure 1 illustrates this support graphically.

Figure 1. NSHP total order definition

The procedure for solving the h1, h2 − step ahead linear prediction problem with respect to the total order
and nonsymmerical half-plane (NSHP) support defined by (1a) involves the construction of predictor of future
values as a linear combination of X k, l ,  k, l ∈ S which are close to X s + h1, t + h2 , h1, h2 ≥ 0, 0  in the sense
of mean squared error. The collection of all finite linear combinations of elements in the space and its closure are
also included in the space. First, we fix our attention on the problem of finding convergent representation for the
one-step ahead linear predictor P

HSX s, t , i.e. the minimum norm linear causal and continuous support predictor
of X s,t . We show that when (3) converges, such a representation exists.

Theorem 2 ([8]).  Let X T ; T ∈ ℤ2 be a PND stationary random field. The one step ahead linear predictor
P

HSX s, t  of X s,t  possesses a convergent series representation given by   
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           P
HSX s,t = − ∑

k = 0

+ ∞

∑
l = 0

+ ∞

ak, lX s − k, t − l , k, l   ≠   0, 0     2

 if and only if ε s,t  has the series representation 

                                     
ε s, t = ∑ + ∞

k = 0 ∑ + ∞
l = 0 ak, lX s − k, t − l              3

In the following theorem, we show that when (3) converges, we can find a convergent representation for all h1,h2 -step 
ahead linear predictors, h1,h2 ≥ 0, 0 , h1,h2 ≠ 0, 0 .

Theorem 3 ([8]).  Let X T ; T ∈ ℤ2 be a PND stationary random field. Then, for any s + h1, t + h2 ∈ Sc, where Sc is
the complement of S. The h1, h2 − step ahead predictor of X s + h1, t + h2 , h1, h2 ≥ 0, 0 , h1,h2 ≠ 0, 0  based on
the past S possesses a convergent series representation given by 

                              P
HSX s + h1,t + h2 = ∑

k = 0

+ ∞

∑
l = 0

+ ∞

 a h1,h2
k, l X s − k,t − l , k,l ≠ 0,0 4

where                       
a h1, h2

k, l = − ∑h1
p = 0∑h2

q = 0bh1 − p, h2 − qap + k, q + l, k, l ≥ 0, 1 , 5

 if and only if ε s,t  has the convergent series representation (3).

        According to the previous theorem, the best h1, h2 − step ahead predictor based on the infinite past S, chosen so 
that the prediction error is a white noise according to which the process X s,t  must be able to be represented, is

P
HSX s + h1, t + h2 = ∑

k = 0

+ ∞

∑
l = 0

+ ∞

a h1,h2
k, l X s − k,t − l , k, l ≠ 0, 0 , h1, h2 ≥ 0, 0

The following relations are analogous to the relations 2.2  in [12] in the one-dimensional case. From [5] we have
a h1, h2

k, l = ∑h1
p = 0∑h2

q = 0bp, qak + h1 − p, l + h2 − q,  k, l ≥ 0, 1 ,  6

Step recursive relations when the prediction is based on infinite past can be immediately deduced from relations (5) and 
(6) as follows,

a h1, h2
k, l = a h1, h2 − 1

k, l + 1 + ∑
p = 0

h1

bp, h2
ak + h1 − p, l,  k, l ≥ 0, 1           7

We shall notice that a 0, 0
k, l = − ak, l for all k, l ≥ 0, 1 . The parameters a h1, h2

k, l , h1, h2 > 0, 0 , can be 
calculated recursively using (7).

3 NUMERICAL EXAMPLE

The proposed prediction methodology is validated through two case studies: an academic example and a lattice dataset 
modeling poverty level across Texas counties using a 2D spatial autoregressive model. These examples illustrate the 
model’s ability to capture spatial dependencies and provide accurate predictions.
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3.1 First Order Multiplicative Spatial Autoregressive Model (MSAR (1))

The stationary first order multiplicative spatial autoregressive model (MSAR (1)) defined by

X s, t = αX s − 1, t + βX s, t − 1 − αβX s − 1, t − 1 + ε s, t ,  s, t ∈ ℤ2,    (8)

where ε s, t  are independent identically distributed random variables, this model is stationary if α < 1 and β < 1 (It 
can be shown that the MA representation (MSAR (1)) model is

bi,j = αiβj , if i ≥ 0,j ≥ 0
0 , if i < 0 or j < 0.

Let a1, 0 = α, a0, 1 = β and a1, 1 = − αβ, the coefficients a h1, h2
k, l , h1, h2 ≥ 0, 0  and k, l ∈ ξ = 1, 0 , 0, 1 , 1, 1  are 

calculated by using the recursive relation (7) and are given by (9) for h1 ≥ 1, h2 ≥ 1.

a h1, h2
k, l =

ah1, h2 − 1
k, l + 1 + αh1 + kβh2 + l ,  k, l = 1, 0 ,

ah1, h2 − 1
k, l + 1 ,  k, l = 0, 1 , 9

ah1, h2 − 1
k, l + 1 − αh1 + kβh2 + l ,  k, l = 1, 1 .

The simulation of the MSAR(1) model and the recursive computation of these coefficients were implemented in MATLAB.
To evaluate the prediction accuracy, the root mean squared error (RMSE) between the simulated and predicted fields was
computed. The RMSE obtained is 1.0503. This value is acceptable as it reflects a relatively low prediction error compared
to the scale of the simulated data. Given the inherent randomness introduced by the noise term ε s,t  in the MSAR(1) model,
an RMSE close to 1 aligns with the standard deviation of the noise (σ = 1). This indicates that the model effectively captures
the spatial dependencies in the random field while accounting for the stochastic variation. Figure 2 shows the simulated
random field and the comparison between true and predicted values at one step ahead h1 = 1,h2 = 1 .

Figure 2. Actual and predicted values of the MSAR (1) model

3.2 Lattice Data Model of Poverty Level in the US State of Texas

As an illustration of a lattice dataset, we analyze the relationship between the poverty level (pov) and the total
population (pop) at the county level in 2009 for the US state of Texas. The data were sourced from the US Census
Bureau and enriched with additional geographical information, including latitude and longitude, derived from

https://hdpulse.nimhd.nih.gov/data-portal/social/map?age=001&age_options=ageall_1&demo=00009&demo_options=poverty_3&race=00&race_options=race_7&sex=0&sex_options=sexboth_1&socialtopic=080&socialtopic_options=social_6&statefips=48&statefips_options=area_states
https://hdpulse.nimhd.nih.gov/data-portal/social/map?age=001&age_options=ageall_1&demo=00009&demo_options=poverty_3&race=00&race_options=race_7&sex=0&sex_options=sexboth_1&socialtopic=080&socialtopic_options=social_6&statefips=48&statefips_options=area_states
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the Texas shapefile. The full dataset, along with the shapefile, is publicly available in the GitHub repository. The
2D-SAR model derived in this analysis is presented in [9].

Figure 3.  (a) Histogram showing the distribution of log poverty levels (% of the population below 150% of the 
poverty threshold) across counties in Texas in 2009. (b) Choropleth map of county-level log poverty levels in the state of

Texas, with a color scale in

Figure 3 illustrates Texas’s 254 counties, color-coded by their poverty levels in 2009. A preliminary analysis
shows a strong linear relationship between the logarithm of the poverty level (\log(pov)) and the logarithm of the
total population log pop . The least squares regression is given by:  Ê {log pop ∣ pop} = − 1.741 +
0.992 log pop . Residual analysis from this fit indicates significant spatial association. Specifically, Moran’s
I = 0.391 and Geary’s c = 0.568 statistics reject the null hypothesis of no spatial association (p-values < 10 − 15).
This result highlights substantial spatial clustering among counties’ poverty levels, even after adjusting for
population size. The SAR model uses the log poverty level as the response variable and the log total population as
the explanatory variable, with the neighborhood system based on geographic adjacency: two counties are
considered neighbors if and only if their boundaries intersect. The spatial weights are assumed to be wij = 1 for
any two neighboring counties si and sj.

 The SAR model is fitted using maximum likelihood, resulting in the estimates:  Ê {  log (pov) ∣  pop } =  −
2.123 +  1.034  log (pop), and σ̂2,ρ̂ = 0.067,0.116 . The modified AR(1,1) model, where both the intercept and
the explanatory variable x s,t  are included in the error term, is given by:

X s,t = 0.116 ⋅ X s − 1,t + 0.067 ⋅ X s,t − 1 + ϵ s,t , 10

where ϵ s,t = − 2.123 + 1.034 v s,t + u s,t , with u s,t ∼ 풩 0,0.067  being an independent white noise
process; v s,t  representing the logarithm of the population, log( pop), in this region at location s,t . This model
is stationary, if a1, 0 + a0, 1 < 1 ([11]). Let a1, 0 = α, a0, 1 = β, the MA representation is

bi,j = αiβj  if i = 0 or j = 0,
i + j αiβj  if i ≠ 0,j ≠ 0.

The coefficients a h1, h2
k, l , h1, h2 ≥ 0, 0  and k, l ∈ ρ = 1, 0 , 0, 1  are calculated by using the recursive

relation [7] and are given by

1. For h1, h2 = 0, 0 , a 0, 0
k, l = ak, l,  k,l ∈ ρ,

https://github.com/OuerdiaArezki/Poverty-Level-in-the-US-State-of-Texas-2009.git
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2. For h1 = 0, h2 ≠ 0, a 0, h2
k, l = a 0, h2 − 1

k, l + 1 + αkβh2 + l,  k,l ∈ ρ,

3. a 0,0
1,0 = α, a 0,0

0,1 = β.

Now, we apply this relation to estimate the predictor coefficients for various values of h2. Applying the
recursive relation for different values of h2 provides the following table:

Figure 4. Actual and predicted values of the model

The left panel of Figure 4 shows the simulated 50 × 50 data grid generated from the poverty data, while the 
right panel presents the predicted values obtained using the AR(1,1) model with h2 = 2.

4 CONCLUSION

This paper presents a 2D spatial autoregressive model for predicting stationary random fields using the 
nonsymmetrical half-plane past (NSHP) framework. The methodology is validated through an academic 
example and a dataset on poverty levels in Texas counties, demonstrating its ability to capture spatial 
dependencies and improve prediction accuracy. The recursive estimation approach facilitates the systematic 
computation of predictor coefficients.
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