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Abstract-In this paper, we introduce a novel optimised Fourier-Markov discrete fractional Hausdorff grey model with a time power
term (OFHGM 1, 1, tα ) to model and forecast greenhouse gas (GHG) emissions. The Black Hole Optimization (BHO) algorithm is
employed to obtain optimal parameters for the fractional order and the time-power coefficient. Numerical implementations already
demonstrate promising results and we further improve the forecasting accuracy of the discrete fractional HGM 1, 1, tα  by employing
the Fourier and Markov approaches. The performance of the OFHGM 1, 1, tα  developed is tested by modelling and forecasting
GHG emissions. Further, a comparison with the modelling and forecasting performance against other grey forecasting models supports
the superiority of the proposed OFHGM 1, 1, tα .

Keywords: Fractional Grey Model, Black Hole Optimization, Fractional Order Accumulating Operator, Greenhouse Gas
Emission Forecasting.

1. Introduction
The production and consumption of energy is one of the major sources of anthropogenic greenhouse gas (GHG)

emissions which accounts for around 78% of GHG emissions globally [1]. GHG are natural gases resulting from human-
induced activities through production and consumption. They contribute directly or indirectly to global warming. Some
main GHG are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). According to Statistics Mauritius, the GHG
emissions has increased by 3.1% from 2021 to 2022, with gross emissions increasing from 5,472 to 5,642 thousand tonnes
of carbon dioxide (CO2) equivalent and net emissions, after absorption by forest and land use practices from 5,136 to 5,308
thousand tonnes carbon dioxide equivalent [2]. Mauritius aims to reduce the overall GHG emissions by 40% in 2030,
compared to the Business as Usual (BAU) scenario of around 6,900 kilotons (kt) CO2  equivalent (including Land use,
land-use change, and forestry (LULUCF)) in 2030 [3]. The rapid increase of atmospheric GHG concentrations remain the
primary contributor to climate change [4], which has a great impact to the socio-economic plans and developments of a
country [5]. Therefore, accurate forecasting of GHG emissions plays a significant role in the development of suitable
energy policies and combating climate change. Different grey approaches for greenhouse gas emissions forecast have been
proposed by scholars globally.

The GM (1, 1) [6] is a time series model for predicting short-term problems and achieves satisfactory results with
only a few data points [7], for exponentially increasing datasets. The GM (1, 1) has been applied to forecast GHG
emissions [8, 9], fuel production [10, 11] and energy consumption [12, 13]. Throughout the years, many scholars have put
forward numerous ways and tools to improve the forecasting accuracy of the grey models. Wang and Li [14] proposed a
non-equigap grey Verhulst model (NE grey Verhulst model) for forecasting CO2 emissions and GDP per capita in China
from 1990 to 2014. The model’s coefficient was optimised using particle swarm optimization (PSO) algorithm. Xu et al.
[15] proposed an adaptive grey model combined with a buffered rolling method (BR-AGM (1, 1)) to forecast China’s
greenhouse gas emissions from 2017 to 2025. Furthermore, Adarkwa et al. [16] proposed a Verhulst-GM (1, N) model and
emissions technical conversion to forecast the actual cement industry CO2 emissions data from 2005 to 2018. Pao et al.
[17] presented a nonlinear grey Bernoulli model (NGBM) to predict China’s compound annual emissions, energy
consumption and real GDP growth between 2011 and 2020, where a numerical iterative method was used to optimise the
parameter of the proposed model. With the aim to avoid the over fitting problem, Xie et al. [18] proposed a robust
reweighted multivariate grey model (RWGM (1, N)) to forecast the GHG emissions in European Union (EU) member
countries from 2010 to 2016. The least absolute shrinkage and selection operator (LASSO) regression was considered to
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simplify the model through constraining the number of predictors. The result showed that the RWGM (1, N) performed
better than the GM 1, N  and RGM (1, N).

Among many others, is the grey model with the fractional order accumulation which was initially proposed by Wu et
al. [19], used an r-order accumulated generating operation (r-AGO) called fractional order. Fractional grey models have
been applied to many fields, especially in energy and environment forecasting [20, 21]. For instance, Wu et al. [22]
proposed a fractional grey model FAGMO (1, 1, k) to forecast China’s nuclear energy consumption. On the other hand,
Yuan et al. [23] presented a grey power model (GPM (1, 1)) based on a fractional order GPM (1, 1) to forecast Wuhan’s
industry water consumption. Xin et al. [24] proposed a fractional time delayed grey model to forecast natural gas and coal
consumption in China. Results of previous studies showed that optimising the parameter of fractional grey models can
greatly enhance the prediction performance of grey models [25]. To further improve the applicability of the existing
fractional grey models, Sahin [26] proposed an optimised fractional nonlinear grey Bernoulli model with rolling
mechanism (ROFANGBM (1, 1)) under pre-pandemic and post pandemic scenarios. The author’s aim was to predict the
share of renewable in primary energy consumption and CO2 emissions of the United States and China. Gao et al. [27]
applied a fractional grey Riccati model (FGRM (1, 1)) for predicting CO2 emissions, where the time response sequence of
FGRM (1, 1) was calculated using the Vieta’s formulas and the bare bone fireworks algorithm was used to optimise the
model. Moreover, Xin et al. [28] proposed a new information priority accumulation method into the grey forecasting model
with the hyperbolic sinusoidal driving term NISinHGM (1, 1) to predict the urban natural gas supply of China. The Whale
Optimization Algorithm (WOA) was used to determine the optimal parameter of the new information accumulated priority.

This paper offers the following contributions:
1. Following the discretization technique [29], a novel discrete fractional Hausdorff grey model with time power term
(DFHGM 1, 1, tα ) is proposed, by adjusting the fractional order r and time power coefficient α. We also propose a novel
FHGM 1, 1, tα  based on Fourier-Markov approaches to enhance the forecasting accuracy of the DFHGM 1, 1, tα .
2. The Black Hole Optimization (BHO) algorithm [30] is used to determine optimal parameter values for r and α.
3. The effectiveness of the proposed models is evaluated against other benchmark approaches and also in fitting

Mauritius’s GHG gas emissions from 2001 to 2020.
The rest of this paper is organized as follows: Section 2 presents the methodology of the FHGM (1, 1), DFHGM 1, 1, tα ,
FDFHGM 1, 1, tα  and OFHGM 1, 1, tα . In section 3, the application and comparison of the proposed models, with
numerical implementations are presented for the simulation and prediction of Mauritius’s GHG emissions. Finally, section
4 concludes the paper.

2. Methodology
In this section, the grey models as well as the optimization technique used to determine the optimal parameters are

discussed.

2.1. Fractional Hausdorff grey model (FHGM (1, 1))
The purpose of the accumulated generating operator (AGO) in the GM (1, 1) is to improve the smoothness of the

fitting sequence. The AGO method decreases the noise of the original sequence and the randomness of the data [31].
Among the many improvements made to the GM (1, 1), improving the grey accumulated generating operator (AGO) is
one of them. Since the advent of fractional order, several researchers have proposed different types of fractional order
accumulated generating operators. For instance, Chen et al. [32] proposed a fractional Hausdorff grey model (FHGM (1, 1)
) with r-order accumulated generating operator (r-AGO). FHGM (1, 1) is the GM 1, 1  when r =  1. The modelling
process of the FHGM (1, 1) is defined as follows:

We define the original data sequence as X(0) =  x 0 (k) n
k = 1and construct the r-order accumulation sequence X(r) =

 x r (k) n
k = 1, where

x r k =  ∑
i = 1

k

x 0 i ir −  (1 − r)r ,    k = 1, 2,…, n, (1)

where r is the fractional order. We define Z(r) =  z r (k) n
k = 2, where 
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z r k =  1
2

x r k + x r (k − 1) ,  k = 2, 3, …, n.  (2)

The differential equation of the FHGM (1, 1) is represented by
dx(r)

dt
+  ax r = b, (3)

where a is the developing coefficient and b is the grey input. Setting â =  a, b T and

B =  
− z r 2 1
− z r 3 1

⋮ ⋮
− z r n 1

,  Y =  
x r 2 − x r 1
x r 3 − x r 2

⋮
x r n − x r n − 1

, (4)

the least squares the least squares estimate sequence of the FHGM (1, 1) satisfies
â =  BTB − 1BTY . (5)

The solution to equation (3) is given by

x̂ r k =  x r 1 −  b
a

e − a(k − 1) +  b
a

,   k = 2, 3, …, n, (6)

and the restored values of x̂ 0 k  are given by

x̂ 0 k =  
x r k ,                                                   for k = 1.
x̂ r k − x̂ r k − 1

kr −  (k − 1)r ,         for k = 2, 3, …, n.
(7)

2.2. The Discrete Fractional Hausdorff Grey Model with Time Power Term (DFHGM 1, 1, t휶 )
To enhance the adaptability of the grey model to diverse sequences, a time power term is incorporated into the grey

model [29]. Moreover, given the advantages of the discrete fractional grey model [33], we propose a discrete fractional
Hausdorff grey model with time power term, called DFHGM 1, 1, tα .The computational steps are summarized as
follows:
The differential equation of the proposed model is given by

dx r (t)
dt

+  ax r t = btα +  c, (8)

where a is the development coefficient, btα +  c is the grey action quantity and α is the time power term. By using the
trapezoid formula, equation (8) can be rewritten as

x r k − x r k − 1 +   az r k = bkα +  c. (9)
Setting â =  a, b, c Tand

B =  

− z r 2 2α 1
− z r 3 3α 1

⋮ ⋮    ⋮
− z r n nα 1

,  Y =  
x r 2 − x r 1
x r 3 − x r 2

⋮
x r n − x r n − 1

, (10)

the least squares estimate sequence of the DFHGM 1, 1, tα  satisfies equation (5). The time discrete response function of
equation (9) is given by

x̂ r k =  uk − 1
1 xr 1 +  ∑

i = 0

k − 2

ui
1 (k − i)αu2 + u3 ,  k =  2, 3, …, n, (11)

where u1 =  1 − 0.5a
1 + 0.5a, u2 =  b

1 + 0.5a, and u3 =  c
1 + 0.5a. The restored values x̂ 0 k  are obtained using equation (7).

2.3. Parameter Optimization
Many studies have shown that the model parameters have a major impact on the forecasting accuracy of the grey

model. We construct a simple optimization problem for searching the optimal parameters for the proposed models, given as

min avg error(i) =  1
n − 1

∑
i = 2

n
x̂ 0 i − x(0) i

x(0) i
 × 100 % ,
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s.t x̂ r k =  uk − 1
1 xr 1 +  ∑

i = 0

k − 2

ui
1 (k − i)αu2 + u3

â =  a, b, c T =  BTB − 1BTY,
(12)

where x(0) i  are the actual values and x̂ 0 i  are the predicted values. Due to its nonlinear characteristics and complexity,
we propose to solve equation (12) using a metaheuristic algorithm, namely Black Hole Optimization Algorithm (BHO)
[30] to determine the optimal parameters of the models.

2.4. Fourier Discrete Fractional Hausdorff Grey Model with Time Power Term (FDFHGM 1, 1, t훂 )
The Fourier series [34] is used to filter out the high-frequency terms (noise) and consider the low-frequency error

values of a model. Therefore, in order to improve the forecasting accuracy of the DFHGM 1, 1, tα , this study uses the
Fourier series to modify the residual of the model. We define the residual series as E(0) =  ε 0 (k) n

k = 2, where
ε(0) k =  x 0 k − x̂ 0 k  ,  k = 2, 3, …, n.  

We use the Fourier series for modifying the error values of the DFHGM 1, 1, tα  using the following equation

ε̂(0) k =  1
2

a0 +  ∑
i = 1

Z

aicos 2πi
n − 1

k + bisin 2πi
n − 1

k  ,  k = 1, 2, …, n,  

where Z =  n − 1
2 − 1 which is the minimum deployment frequency of the Fourier series and can only take integer values.

The forecasting series of the DFHGM 1, 1, tα  can be modified as

x̂ 0ε k =  x 0 k ,                                                   for k = 1.
x̂ 0 k +  ε̂(0) k ,                    for k = 2, 3, …,

where x̂ 0ε k  represents the restored value of the FDFHGM 1, 1, tα  and x̂ 0 k  is the restored value from the DFHGM
1, 1, tα .

2.5. The Optimised Fractional Hausdorff Grey Model with Time Power Term (OFHGM 1, 1, t휶 )
To further improve the forecasting accuracy of the FDFHGM 1, 1, tα , we introduce the Fourier-Markov DFHGM

1, 1, tα . The original data are first modelled by the FDFHGM 1, 1, tα  and then the residual errors between the
predicted values and the actual values for all previous time steps are obtained. The model establishes the transition
behaviour of those residual errors by Markov transition matrices and then the possible correction for the predicted value
can be made from those Markov matrices [35]. According to the relative error between the predicted value and the actual
value of the grey model, the relative error is divided in S states. We define S states for each time step where each state is an
interval whose width is equal to a fixed portion of the range between the maximum and minimum of the residual errors.
Each state Sij has a boundary represented by Sij =  Lij, Uij , where Lij and Uij are the lower bound and upper bound of the
jth state for the ith time step of the residual error series. After determining the state that has the greatest probability, then the
boundary of the state will be used to predict the future data using

x̂ 0m k = x̂ 0ε k 1 + 0.5 Lij + Uij .

2.6. Model-Performance Metrics
To comprehensively evaluate the performance of the models discussed in this paper, we examine the error associated

with model fitting. The metrics considered are the mean absolute percentage error (MAPE) and the root mean square error
(RMSE) given by:

MAPE =  1n∑n
i = 1

Xi − Yi
Xi

 × 100 and  RMSE =  
∑n

i = 1 Xi − Yi
2

n ,
where n is the data sample size, Xi are the actual values and Yi are the predicted values.

3. Results

3.1. Test Case Scenario 1: Total greenhouse gas emissions (GHG)
    Forecasting total greenhouse gas (GHG) emissions in Mauritius is vital, especially, with the island being a tourist

destination. As such, effective climate strategies can be set and future emission trends modelled. The government can
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set realistic reduction targets and prioritize actions in key sectors like energy, transportation, and agriculture. Accurate
forecasting also helps to allocate the island’s limited resources efficiently for cleaner technologies and renewable
energy initiatives. Early identification of potential emission gaps is allowed, ensuring timely interventions to stay on
track. Moreover, GHG forecasts aid Mauritius in meeting its international reporting obligations, enhancing climate
resilience, and preparing for the impacts of climate change on vulnerable sectors such as tourism and agriculture. 

As a first test case, we consider the total greenhouse gas emissions (GHG) [36] for the period 2001 to 2020 in
Mauritius to train the models, as was discussed in Section 2. A decrease in the MAPE from 3.272% for the GM 1, 1  
to 0.051% for the OFHGM (1, 1, tα) can be observed in Table 1. According to Figure 1, the OFHGM 1, 1, tα  closely
follows the actual data throughout the entire period. The OFHGM 1, 1, tα  appears to be the most accurate model in
predicting the actual gas emissions. We also observe that the GM 1, 1  fails to conform to the actual data. 

Table 1: The performance of the models based on MAPE and RMSE for total greenhouse gas emissions (GHG).

GM (1, 1) DFHGM (1, 1, tα) FDFHGM (1, 1, tα) OFHGM (1, 1, tα)

MAPE 3.272 1.534 0.393 0.051
RMSE 0.1420 0.0737 0.0153 0.0021

Figure 1: Comparison of plots for total greenhouse gas emissions (GHG).

3.2. Test Case Scenario 2: National inventory of greenhouse gas emissions (carbon dioxide)
Forecasting the national inventory of greenhouse gas emissions, particularly carbon dioxide, is crucial for helping

the government set achievable emissions reduction targets and monitor progress across key sectors, including energy,
transportation, and industry. This information guides the allocation of resources for renewable energy investments and
energy-efficient technologies. Thus, as a second test case scenario, we take national inventory of greenhouse gas
emissions (carbon dioxide) [37] from 2001 to 2020.

Table 2 shows the performance of the models based on MAPE and RMSE for CO2 gas emissions, which again shows
that OFHGM 1, 1, tα  is the most accurate model in predicting the actual gas emissions. We can observe in Figure 2
that the plot of OFHGM 1, 1, tα  is a better fit compared to the other grey models. The plot shows that the structure of
the OFHGM 1, 1, tα  self-adapts to conform to the actual data.

Table 2: The performance of the models based on MAPE and RMSE for CO2 gas emissions.

GM (1, 1) DFHGM (1, 1, tα) FDFHGM (1, 1, tα) OFHGM (1, 1, tα)

MAPE 4.356 1.873 0.532 0.073
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RMSE 180.69 83.07 20.15 2.882

Figure 2: Comparison of plots for carbon dioxide gas emissions.

3.3. Test Case Scenario 3: National inventory of greenhouse gas emissions (nitrous oxide)
As a final test case, we also examine the national inventory of greenhouse gas emissions, specifically nitrous oxide,

using data from Statistics Mauritius [38]. According to the results presented in Table 3, the OFHGM 1, 1, tα  
significantly outperforms the GM (1, 1) across both key performance metrics. The OFHGM 1, 1, tα  achieves the
lowest MAPE just 0.095% and a RMSE of 0.00064. These results indicate that the OFHGM 1, 1, tα  delivers far more
accurate and precise predictions of nitrous oxide emissions than the other grey models, making it a more reliable tool
for forecasting future emission trends in Mauritius. Furthermore, Figure 3 shows a comparison of the plots of the grey
models.

Table 3: The performance of the models based on MAPE and RMSE for nitrous oxide gas emissions.

GM (1, 1) DFHGM (1, 1, tα) FDFHGM (1, 1, tα) OFHGM (1, 1, tα)

MAPE 3.296 2.526 0.662 0.095
RMSE 0.0242 0.0204 0.0044 0.00064

Figure 3: Comparison of plots for nitrous oxide gas emissions.

4. Conclusion
Forecasting greenhouse gas (GHG) emissions is crucial for understanding the future impact of climate change and

developing effective mitigation strategies. Accurate emission forecasts help policymakers, researchers, and industries plan
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for emissions reduction targets and assess the effectiveness of environmental policies. Various forecasting methods,
including statistical, machine learning, and grey models, are used to predict GHG emissions based on historical data and
trends. These models enable better decision-making in environmental planning, climate change research, and sustainability
efforts. As the global focus on reducing carbon footprints intensifies, advanced forecasting techniques, such as the one
proposed in this study, provide critical insights into managing and mitigating the effects of GHG emissions. In conclusion,
the proposed Fourier-Markov discrete fractional Hausdorff grey model with a time power term (OFHGM (1, 1, tα))
demonstrates a highly effective approach for forecasting greenhouse gas emissions. By integrating the discrete fractional
Hausdorff grey model with Fourier and Markov models, and optimizing the parameters using the Black Hole Optimization
algorithm, the OFHGM 1, 1, tα  achieves remarkable forecasting accuracy. The model outperforms other grey forecasting
models, as evidenced by the MAPE and RMSE, making it a promising tool for predicting GHG emissions, as illustrated in
its application to Mauritius.
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