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Abstract - Accurate forecasting of CO2 emissions is vital for developing policies to address climate change and sustainability challenges.
In Thailand, understanding emissions across key economic sectors is critical for mitigating the country's carbon footprint. This study
evaluates several machine learning models, including Artificial Neural Networks (ANN), Gradient Boosting Machine (GBM), Multiple
Linear Regression (MLR), Random Forest (RF), and Support Vector Machines (SVM), using sector-specific data from 2005 to 2024
provided by the Energy Policy and Planning Office. The results indicate that MLR outperformed other models, achieving the lowest
MAE, MSE, and RMSE, as well as the highest R2. While SVM and RF showed moderate performance, GBM and ANN exhibited higher
prediction errors, with ANN being particularly unreliable due to extreme deviations. The MLR model was subsequently used to predict
CO2 emissions for 2024, and its predictions closely aligned with actual emissions, confirming its accuracy. These findings highlight MLR
as a robust and interpretable model for CO2 emission forecasting, offering a reliable alternative to more complex models. 
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1. Introduction
Climate change has become a critical global challenge, with carbon dioxide (CO2) emissions being a significant

contributing factor. As countries strive to mitigate their environmental impact, accurate forecasting of CO2 emissions is
essential for informed policy decisions and effective environmental management. In Thailand, rapid industrialization and
economic growth have led to a steady rise in greenhouse gas emissions, highlighting the need for reliable predictive models
to assess future trends and support sustainability efforts.

Several forecasting methods have been proposed for estimating CO₂ emissions, including traditional time series
approaches like the Autoregressive Integrated Moving Average (ARIMA) and the Box-Jenkins methodology. [1-5]. These
statistical approaches are widely applied in time series forecasting because of their ability to effectively handling linear data
structures. However, they face limitations when addressing complex, curvilinear relationships and high-dimensional
structures, which are common in CO2 emission patterns [6-8]. Moreover, these models require strict assumptions regarding
stationarity and struggle to adapt to structural changes in emissions data [9].

In contrast, machine learning (ML) techniques offer more flexibility in capturing intricate patterns and nonlinear
dependencies in environmental datasets. Studies have demonstrated that ML-based models, for instance artificial neural
networks (ANN), support vector machines (SVM), and ensemble learning methods, outperform traditional statistical models
in CO2 emission forecasting by effectively modelling complex relationships and handling large datasets. [4, 10-11]

This research aims to develop and evaluate machine learning regression models for CO2 emission forecasting in
Thailand, focusing on data from major economic sectors such as power generation, transportation, industrial, and other
sectors. In 2023, the power generation sector in Thailand released approximately 89.6 million metric tons of CO2, while the
transportation sector emitted around 79 million metric tons, accounting for 29% of the country's total emissions. In 2016,
energy consumption in the industrial sector accounted for about 18% of Thailand's CO₂ emissions, totalling around 80 million
metric tons. [12-13]. By utilizing sector-specific data, this study seeks to enhance forecasting accuracy and improve
environmental planning and policy formulation. A comparative analysis of different ML algorithms will be conducted to
determine the most appropriate approach for CO2 emission forecasting in Thailand.
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Through this research, we aim to contribute to ongoing climate change mitigation efforts by providing a robust, data-
driven approach to CO2 emission forecasting. Leveraging machine learning techniques, this study aspires to improve
prediction accuracy and support the development of more effective and sustainable environmental policies. 

2. Materials and Methods
2.1. Data Collection and Preprocessing

This study employs sector-specific CO2 emissions data from Thailand's key economic sectors, including power
generation, transportation, industry, and others. The dataset, obtained from the Energy Policy and Planning Office, Ministry
of Energy [14], covers the period from January 2005 to December 2024, providing a comprehensive historical record for
analysing emission trends and improving forecasting accuracy. 

To develop a CO2 emission forecasting model, machine learning methodologies ̶ including artificial neural networks
(ANN), gradient boosting machine (GBM), multiple linear regression (MLR), random forest (RF) and support vector
machines (SVM) ̶ are employed. The analysis is conducted using R software, and the dataset, covering the period from
January 2005 to December 2023, is divided into two subsets: a training set (70%) consisting of data from 2005 to 2020 for
model development and a test set (30%) containing data from 2021 to 2023 for performance evaluation. The trained models
are validated using multiples performance metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and R-squared (R2).

To assess the reliability and effectiveness of the forecasting models, the best-performing model is applied to predict CO2
emissions for 2024, and the results are compared against actual emission data from 2024 to verify its predictive accuracy and
practical applicability.

2.2. Machine Learning Methods
2.2.1. Artificial Neural Networks (ANN) 
Artificial neural networks are computing models consisting of multiple layers of connected neurons, inspired by the

structure of the human brain. The network learns through training to map input features to a desired output. The model is
defined as shown in Eq. (1):

y =  f∑
i = 1

n

wixi + b, (1)

where y    is the output (CO2 emission prediction).
f    is the activation function.
xi   are the input features (economic sectors).
wi  are the weights of the connections.
b    is the bias term.

2.2.2. Gradient Boosting Machine (GBM) 
Gradient boosting machine is an ensemble method that constructs decision trees in sequence, with each new tree learning

from and correcting the errors of the previous one. The model is represented by Eq. (2):

f(x) =  ∑
m = 1

M

αmhm x , (2)

where f(x)   is the predicted CO2 emission.
hm(x)  is the m-th decision tree.
αm   is the weight of the m-th tree.
M   is the total number of trees in the ensemble.

2.2.3. Multiple Linear Regression (MLR) 
Multiple linear regression is a statistical method for examining the association between a dependent variable (CO₂

emissions), and multiple independent variables. (economic sectors: power generation, transportation, industry and other
sectors). The model is expressed as shown in Eq. (3):
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Y =  β0 + β1X1 + β2X2 + ⋯ + βnXn + ε, (3)

where Y   is the predicted CO2 emission.
X1, X2,…,Xn  are the independent variables.
β0, β1,…,βn  are the model coefficients.
ε   is the error term.

2.2.4. Random Forest (RF) 
Random forest utilizes an ensemble learning technique that constructs a set of decision trees, each trained on a randomly

selected subset of data. For regression tasks, the last prediction is obtained by averaging the outputs of all individual trees.
The model is represented in Eq. (4):

f(x) = 1
M

 ∑
t = 1

M

ht x , (4)

where f(x) is the predicted CO2 emission.
ht(x) is the prediction of the t-th decision tree.
M is the total number of trees in the random forest.

The summation ∑M
t = 1ht x  aggregates predictions from all trees, and the division by M ensures the final output is the

average of individual tree predictions.
2.2.5. Support Vector Machines (SVM) 
Support vector machines (SVM) are supervised learning algorithms capable of addressing both classification and

regression problems by identifying the optimal hyperplane to separate data. When applied to regression, support vector
regression (SVR) is used to determine a function that best captures the relationship between predictor variables and the target
variable, with minimizing errors within a specified margin. The regression model is shown in Eq. (5):

f x = 〈 w,x〉 + b, (5)
where f(x)  is the predicted CO2 emission.

〈 w,x〉  is the inner product between the weight w vector and the input feature vector x.
b  is the bias term.

To determine the optimal weight vector w and bias b, the following objective function is minimized as shown in Eq.
(6):

w = 1
2

w 2, (6)

subject to the ε-insensitive loss function constraints:
yi − 〈 w,xi 〉 − b ≤ ϵ. (7)

The goal is to ensure that most predictions lie within an ε-tube, while minimizing the model complexity w 2 to prevent
overfitting. In real-world cases where some points may fall outside the ϵ-tube, slack variables ξ and ξ *  are introduced to
handle these deviations:

yi − 〈 w,xi 〉 − b ≤ ϵ + ξi. (8)
〈 w,xi 〉 + b − yi ≤ ϵ + ξ *

i . (9)
ξi, ξ *

i ≥ 0.
The modified optimization objective becomes

1
2

w 2 + C∑
i = 1

n

(ξi + ξ *
i ). (10)

Here, C   represents a regularization parameter that balances model complexity and the allowance for deviations. 
yi is the actual CO2 emission value for the i-th data point.
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ϵ  is a margin within which predictions are considered acceptable, meaning small deviations from actual values are
ignored.

2.3. Machine Learning Framework
The proposed framework for forecasting CO2 emissions in Thailand follows a structured sequence of steps, ensuring

systematic data processing and model development [15-16].
2.3.1. Data collection:
The initial step involves gathering a comprehensive dataset that includes CO2 emissions records alongside key

contributing factors. These variables provide the necessary inputs for identifying trends and patterns, enabling the model to
make informed predictions. 

2.3.2. Data processing:
Before analysis, the dataset undergoes preprocessing to improve data integrity and consistency. This includes detecting

and addressing missing or erroneous values while standardizing input features to maintain a uniform scale. These refinements
help optimize the performance of machine learning models.

2.3.3. Dataset splitting:
For effective model training and evaluation, the dataset is divided into two subsets: a training set (70%) covering data

from 2005 to 2020, used for model learning, and a test set (30%) spanning 2021 to 2023, reserved for performance
assessment. Cross-validation is implemented during this phrase to improve the model’s performance to generalize across
different data distribution.

2.3.4. Model training:
During the training phrase, machine learning algorithms are applied to the training dataset. This step involves selecting

the most suitable predictive models, fine-tuning hyperparameters, and optimizing key components such as kernel functions,
weight assignments, and bias terms, cross-validation assures that the models are well-fitted without overfitting the training
data.

2.3.5. Model testing:
Once trained, the models are tested using the reserved test dataset. The model generates CO2 emission predictions based

on input factors, and these predictions are subsequently compared against actual recorded values to evaluate their accuracy
and reliability.

2.3.6. Performance evaluation:
In the final step, the predictive performance of each model is evaluated using various assessment metrics, such as mean

absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and R-squared (R2). These metrics offer
valuable insights into the accuracy and efficiency of the models, aiding in the selection of the most suitable approach for
CO2 emission forecasting. 
2.4. Model Evaluation Criteria

To assess the predictive performance of machine learning models for CO2 emission forecasting, a range of statistical
metrics are applied. These comprise mean absolute error (MAE), mean squared error (MSE), root mean squared error (
RMSE), and R-squared (R2). Each of these metrics provides important insights into the precision and dependability of the
predictions [17]. 

Mean absolute error (MAE) estimates the mean error between predicted and actual values, as computed in Eq. (11).

MAE =  1
n
∑
i = 1

n

yi − ŷi  , (11)

where yi  represents the actual CO2 emissions.
   ŷi   is the predicted value.
 n   is the total number of observations.
Mean squared error (MSE) evaluates the average squared deviations between predicted and actual values, giving more

weight to larger errors due to the squaring process, as represented in Eq. (12):

MSE =  1
n
∑
i = 1

n

(yi − ŷi)2 . (12)
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A lower MAE and lower MSE indicate better model performance, as it signifies lower deviation between predictions and
actual values.

Root mean squared error (RMSE) is derived from the square root of MSE, offering a comprehensible measure of
prediction error, expressed in the same units as the target variable, as shown in Eq. (13):

RMSE =  MSE  . (13)

A lower RMSE indicates a better-fitting model. It is especially useful when errors of greater magnitude need to be
considered, as it penalizes larger deviations more than MAE.

R-squared (R2) Coefficient, or coefficient of determination, represents the proportion of variance in the dependent
variable that is captured by the model, as shown in Eq. (14).

R2 =  1 −
∑
i = 1

n

yi − ŷi
2

∑
i = 1

n

yi − y̅i
2

 , (14)

where y̅ is the mean of actual CO₂ emissions. 
An R2 value closer to 1 indicates a strong relationship between the predicted and actual values, whereas a value near 0 

suggests poor predictive performance.

3. Results
The performance of five machine learning models - artificial neural networks (ANN), gradient boosting machine (GBM),

multiple linear regression (MLR), random forest (RF) and support vector machines (SVM) - was evaluated based on four
key metrics: mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and R-squared (R2).
The results are visualized in Table 1 and Fig. 1. 

Table 1: Model performance.
Methods MAE MSE RMSE R2

ANN 1180.28 2126834.83 1458.37 N/A
GBM 556.12 516011.70 718.34 0.4833
MLR 132.51 27634.04 166.23 0.9699
RF 427.59 270636.77 520.23 0.8594
SVM 388.81 214745.20 463.41 0.8283

          
Fig. 1: Comparison of the model’s performance.
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      As shown in Table 1 and Fig. 1, MLR achieved the lowest MAE (132.51), MSE (27634.04) and RMSE (166.23),
demonstrating the highest predictive accuracy among all models. Additionally, MLR had the highest R2 (0.97), indicating
strong alignment with actual CO2 emissions. SVM and RF exhibited moderate performance, with  R2 of 0.83 and 0.86,
respectively. GBM and ANN, however, showed significantly higher prediction errors. ANN had the highest MAE (1180.28)
and RMSE (1458.37), and its R2 was N/A, likely due to extreme prediction deviations, rendering the model unreliable for
this task. GBM also performed poorly, with an R2 of 0.48, suggesting limited predictive capability.

Fig. 2: Comparison of the actual data and prediction using MLR model.

       The MLR model, being the best-performing approach, was applied to predict CO2 emissions for 2024. Fig. 2 illustrates
the comparison between actual and predicted values, demonstrating a close fit and further confirming MLR's reliability for
forecasting emissions in Thailand. These findings emphasize that while complex models may capture intricate patterns,
simpler and more interpretable models like MLR can still provide robust and accurate predictions.

4. Conclusion
       This study evaluated machine learning models for CO2 emission forecasting in Thailand using real economic sectors
specific data. MLR achieved the highest accuracy with the lowest MAE (132.51), MSE (27634.04) and RMSE (166.23), while
GBM and ANN exhibited higher errors, indicating potential overfitting. SVM and RF performed moderately but did not
surpass MLR.
       The R2 for ANN was N/A, likely due to extreme prediction errors, making it unreliable. These findings suggest that
while advanced models capture complex patterns, MLR remains effective and interpretable. Future work should refine model
tuning and explore hybrid approaches for enhanced predictive performance.
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