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Abstract - Multivariate spatial phenomena are ubiquitous, spanning domains such as climate, pandemics, air quality, and social
economy. Cross-correlation between different quantities of interest at different locations is asymmetric in general. Such asymmetric
cross-correlation is a fundamental yet often overlooked phenomenon in multivariate spatial statistics. This paper provides the
visualisation, structure, and properties of asymmetric cross-correlation. It reviews mainstream multivariate spatial models and analyzes
their capability to accommodate asymmetric cross-correlation. Finally, it demonstrates the impact of accounting for asymmetric cross-
correlation on model accuracy using a one-dimensional simulated example.
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1. Introduction
 Multivariate spatial phenomena are ubiquitous across disciplines. Examples include climate variables (temperature,

precipitation, wind speed), pandemic indicators (protein mutation rate, UV radiation intensity, vaccination coverage), air
quality measures (PM2.5, NO₂, O₃), and socioeconomic factors (crime rates, housing prices, income levels). The common
characteristic of these phenomena is that each quantity at a location si interacts with: (1) itself at nearby locations (same-
variate auto-correlation); (2) other quantities at the same location (same-location auto-correlation); (3) other quantities at
nearby locations (cross-correlation). 

Auto-correlations (types (1) and (2)) are symmetric by definition. For example, the correlation between PM2.5 at
locations si and sj is identical to the correlation between PM2.5 at sj and si. Similarly, the correlation between PM2.5 and O₃
at a single location si is the same as the correlation between O₃ and PM2.5 at si. 

In contrast, cross-correlation (type (3)) is generally asymmetric. For instance, the cross-correlation between PM2.5 in
Saudi Arabia and Sea Salt (SS) in Egypt differs from the cross-correlation between PM2.5 in Egypt and SS in Saudi Arabia.
Mathematically, corr X si ,Y sj ≠ corr X sj ,Y si , where X represents PM2.5 and Y represents SS.

Figure 1 shows the empirical same-variate auto-correlation matrix plot of PM2.5, displaying the
corr PM2.5 si , PM2.5 sj ≡  corr PM2.5 sj , PM2.5 si  across four equal-width longitude strips: [−180°,−90°), [−90°,
0°), [0°, 90°), [90°, 180°]. The symmetry is evident. 

Figure 2 is the empirical cross-correlation plots. It displays corr PM2.5 si , PM2.5 sj   ≠
 corr PM2.5 sj , PM2.5 si  across four equal-width longitude strips. The asymmetry is prominent.

Lon: [−180°, −90°) Lon: [−90°, 0°) Lon: [ 0°, 90°) Lon: [ 90°, 180°]
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Fig. 1: Empirical same-variate auto-correlation matrix plots for PM2.5 across four longitude strips. All symmetric
about y = x.

Lon: [−180°, −90°) Lon: [−90°, 0°) Lon: [ 0°, 90°) Lon: [ 90°, 180°]

Fig. 2: Empirical cross-correlation matrix plots for PM2.5 and Sea Salt across four longitude strips. All asymmetric.

2. Structure of Joint Covariance Matrix
Consider data from a multivariate spatial stochastic process {(Y₁(si), ..., Yp(si)) : i = 1, ..., n}. 
Let Y = [Y₁ᵀ(·), ..., Ypᵀ(·)]ᵀ = [Y₁ᵀ, ..., Ynᵀ]ᵀ represent a vector of np random variables, where Y₁(·) ∈  ℝn, while Y₁

∈  ℝp. The joint covariance matrix Σnp  ×  np  =   cov Yl si , Yk sj   =   Clk si, sj , where Clk si, sj  is 
 a cross-covariance if l ≠ k  and i ≠ j 
 a same-variate auto-covariance if l = k but i ≠ j 
 a same-location auto-covariance if l ≠ k  but i = j.

The joint covariance matrix can be organised in two ways: one is location-based, and the other is variate-based. For the
former, the structure of the joint covariance matrix is shown in Figure 3, and for the latter, the structure of the joint covariance
matrix is shown in Figure 4. 

Fig. 3: Structure of the joint covariance matrix, with block matrices grouped by locations.

Fig. 4: Structure of the joint covariance matrix, with block matrices grouped by variates.
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For a clear illustration, we expand one of the off-diagonal blocks  cov Y s1 ,Y s2 p × p in Fig. 3 and 
cov Y1 s ,Y2 s n × n in Fig. 4 to expose the asymmetry. Specifically, the off-diagonal block cov Y s1 ,Y s2 p × p is 

shown in Fig. 5.  

Fig. 5: Structure of off-diagonal block cov Y s1 ,Y s2 p × p.

Here, cov Yl s1 ,Yp s2 ≜ Clp s1,s2 ≠ Cpl s1,s2 ≜ cov Yp s1 ,Yl s2  in general. 
And the off-diagonal block cov Y1 s ,Y2 s n × n is shown below in Fig. 6.  

Fig. 6: Structure of off-diagonal block cov Y1 s ,Y2 s n × n

Here, cov Y1 s1 ,Y2 sn ≜ C12 s1,sn ≠ C12 sn,s1 ≜ cov Y1 sn ,Y2 s1  in general.
In contrast, diagonal blocks in Fig. 3 and 4 representing auto-covariance are always symmetric. Specifically, for the 

same-location auto-covariance: cov Yl s1 ,Yp s1 ≜ Clp s1,s1 = Cpl s1,s1 ≜ cov Yp s1 ,Y1 s1 .  And for the same-
variate auto-covariance: cov Y1 s1 ,Y1 sn ≜ C11 s1,sn = C11 sn,s1 ≜ cov Y1 sn ,Y1 s1 .

It is worth noting that while off-diagonal blocks representing cross-covariance are generally asymmetric, the joint 
covariance matrix Σnp × np itself must be positive definite and therefore symmetric as a whole. The asymmetry in the off-
diagonal blocks must be symmetric across the main diagonal of Σnp × np.

3. Properties of Auto-correlation and Cross-correlation
The auto-/cross-correlation is defined as Corrlk si,sj =

Clk si,sj  

Cll si, si   Ckk sj, sj
.

3.1. Auto-correlation Properties
 Symmetric: auto-correlation matrices are symmetric about the main diagonal. See Fig. 1.
 Maximum at diagonal: the main diagonal values Corrll si,si  of the auto-correlation matrix have the largest
magnitude of 1, where l = 1, . . . p, and i = 1, . . . , n. See Fig. 1.
 Bounded magnitudes: the magnitude of the off-diagonal values in the auto-correlation matrix must be less than or

equal to the main diagonal value of 1. Specifically,
o Corrlk  si, si ≤   Corrll si, si  for same-location auto-correlation.
o Corrll si,sj ≤ Corrll si, si  for same-variate auto-correlation.

 Sign flexibility: auto-correlation can be both positive and negative. See Fig. 1.
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3.2. Cross-correlation Properties
 Asymmetric: cross-correlation matrices are generally not symmetric. See Fig. 2, 5, 6. 
 Maximum location flexibility: the largest magnitude (i.e., 1) does not necessarily occur on the main diagonal. See

Fig. 2.
 Unbounded by diagonal: magnitudes of off-diagonal values are not necessarily less than main diagonal values.

See Fig. 2.
 Overall bound: Corrlk si, sj   ≤   Corrll si, si Corrkk sj, sj   ≡  1. See [1].
 Sign flexibility: cross-correlation can be both positive and negative. See Fig. 2.

4. A Criterion for Assessing Model Quality
Since the off-diagonal blocks representing cross-covariance in Σnp × np are generally asymmetric, the capability to 

capture this asymmetry serves as one criterion for assessing multivariate spatial models. Below, we briefly review 
mainstream modelling methods for constructing the joint covariance matrix Σnp  × np and analyze their capability of 
incorporating the asymmetric cross-covariance. 

4.1 Intrinsic Correlation Model
The intrinsic correlation model [2] (also called separable model [3]) decomposes a covariance matrix block at a given

pair of locations as:
C si,sj = ρ si,sj Vp × p , 

where ρ si,sj  is the pure spatial correlation between locations and Vp × p is the variance-covariance matrix among p 
variates. 

The joint covariance matrix then becomes a Kronecker product:
Σnp × np = Hn × n ⊗ Vp × p , 

Since Vp × p is symmetric by definition, each off-diagonal block in Σnp × np is a spatial correlation scalar times a symmetric
matrix, making the off-diagonal block symmetric. Therefore, this model lacks a mechanism to accommodate asymmetric 
cross-covariance.

4.2 Kernel Convolution Approach
The kernel convolution approach [4] generates each variate field individually from a common underlying hidden

process:

Yl si   =  σl ∫ 

 

kl si  −  t  g t  dt
where g(·) is a standard Gaussian process and kl(·) is a square integrable kernel function.

Then the l,r th cross-covariance block has elements:
Clr si,sj  = σlσr ∫  ∫   kl si − t kr sj − t ρ t − t'  dt dt'

By introducing a shift parameter Δ to the location separation lag s − t  ≜ h , asymmetry can be accommodated since 
hij − Δ ≠ hji − Δ.

4.3 Multivariate Matérn Approach
The multivariate Matérn method [5] models both the auto-correlation and cross-correlation using Matérn correlations.

Specifically, 
Corrll  h =  M h; νl, κl  

Corrlk h = βlkM h;νlk,κlk ,
where M(·) represents the Matérn correlation function, with parameter ν controlling the small-scale smoothness near the 
origin, and κ controlling the rate of the correlation decay at a large spatial scale [6]. βlk is the cross-correlation between two
variates l, k regardless of location. Separation lag h  ∈  Rd.
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By introducing a shift parameter Δ to the spatial separation lag h, asymmetric cross-correlation can be 
accommodated.

4.4 Conditional Modelling Approaches
Mardia [7] proposed modelling each Yi conditionally as:

E Yi|Y − i = μi + Σj ∈ N i βij Yi − μj ;   Var Yi|Y − i = Γi
This method constructs the joint precision matrix Σ − 1

np × np rather than the covariance matrix, making the 
incorporation of asymmetric cross-covariance less straightforward and challenging.

Cressie [8] constructs the joint covariance matrix through conditional means and covariances:

E Yq si |Yr · : r = 1,2,…, q − 1 = ∑
r  =  1

q − 1

∫
 D

 

bqr si,v Yr v dv

cov Yq si ,Yq sj |Yr · :r = 1,2,…, q − 1 = Cq| r < q    si, sj
Similar to kernel convolution, the bqr si, v  function can accommodate asymmetric cross-covariance by introducing a shift
parameter Δ.

4.5 Remark
The mainstream multivariate models can be broadly categorized into two types. One is the unconditional type, which

directly models the off-diagonal cross-covariance matrices. Examples include the intrinsic correlation model (Section 4.1),
the kernel convolution model (Section 4.2) and the multivariate Matérn model (Section 4.3). The other type consists of 
conditional modelling methods discussed in Section 4.4. 

The unconditional types can be further divided into two kinds: one is modelling the cross-covariance matrices in a 
p  ×  p dimension (e.g., intrinsic correlation model), which lacks the mechanism to accommodate the asymmetry. The 
other is modelling the cross-covariance matrices in an n  ×  n dimension (e.g., kernel convolution, multivariate Matérn), 
which can accommodate asymmetry through a spatial shift parameter Δ. 

5. An Example
A 1D simulation was conducted using Cressie's conditional approach [8]. The spatial domain D = [-10, 10] was

discretized with grid size 0.1, resulting in 200 locations. A tri-variate process was modelled across the domain.
The goal was to predict true process values at the first 50 locations of the first field, given the remaining noisy 

observations in the same field and 400 observations from the other two fields. 
Prediction results were compared between models with and without a shift parameter Δ. Figure 7 shows that the 

model with Δ, which accounts for the asymmetry, produces more accurate prediction results (solid line) than the one 
without it (the dashed line). 



150-6

Fig. 7 Prediction results for the first 50 locations of the first field, given the noisy
observations from the remaining locations in the first field and the 400 observations from

the other two fields.

Table 1 compares model accuracy using two metrics: Mean Absolute Error (MAE) and Root Mean Square Error 
(RMSE). The model with the shift parameter Δ has lower MAE and RMSE than the one without.

Table 1: Compare MAE and RMSE between the Model with Δ and the One without Δ.
Model MAE RMSE
With Δ 0.245 0.289
Without Δ 0.706 0.740

6. Conclusion
Multivariate spatial phenomena are ubiquitous, spanning multiple disciplines. Quantities of interest not only interact

with themselves at nearby regions but also interact with other quantities at nearby locations, as reflected by cross-correlation
(or cross-covariance). The cross-correlation is generally asymmetric, and the capability to capture this asymmetry is one of
the criteria for assessing model quality.

Admittedly, other factors like computational efficiency also matter in model assessment. Methods like the intrinsic
correlation model (Section 4.1) and Mardia's conditional method (Section 4.4) may not readily capture asymmetric cross-
covariance but offer computational efficiency. For example, Mardia's conditional approach produces a sparse precision
matrix that speed up overall computation. 

Asymmetric cross-covariance matrix blocks reside in the joint covariance matrix Σnp  ×  npwhile the sparsity is present
in the joint precision matrix Σ − 1

np  ×  np.  Methods that can simultaneously address asymmetric cross-covariance and maintain
computational efficiency (e.g., a sparse precision matrix) as in [9] are increasingly needed. 
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