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Abstract - Statistical surrogates facilitate inference of a complex system when direct observation would disturb its underlying
processes or when modelling the entire system is prohibitively expensive. Gaussian processes (GPs) are a common non-
parametric surrogate model, with fast predictions and powerful uncertainty quantification. However, they struggle to capture
surfaces that violate its standard assumptions. Deep Gaussian processes (DGPs) relax GP assumptions through a hierarchical
structure which introduces model flexibility by warping and rotating the input space between GP layers, improving robustness
and predictive accuracy for challenging surface dynamics. Tuning hyperparameters for multiple GP layers requires a higher
computational complexity scaling with sample size. This can be reduced through the Vecchia sparse covariance approximation
facilitating large training samples, while reducing predictive accuracy. This paper evaluates the computational efficiency and
prediction accuracy of DGPs for simulating two smooth multidimensional surfaces against Bayesian multivariate spline-
based methods, a common alternative surface estimation approach. In smaller samples, DGPs outperformed the comparison
methods in prediction accuracy for both target functions. However, with increasing sample size necessitating the Vecchia
approximation, the relative predictive advantage of the DGPs over competitors deteriorated, collapsing for the largest sample.
This comparative reduction in performance with the Vecchia approximation appears to be caused by poor mixing of latent
hyperparameters. The DGP computation time was approximately 10 times longer than the comparison methods, with a
smaller MCMC effective sample size. To conclude, DGP predictions outperformed competing Bayesian spline-based methods
in smaller samples, but offered no predictive advantage in larger samples that necessitated the Vecchia approximation.
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1. Introduction
The goal of measuring a complex system to predict its behavior at an unknown position or future state is often hindered in

situations where directly observing the system would disrupt its underlying processes or when a full simulation of the system
is prohibitively expensive. In such situations, employing a statistical computationally efficient, low-dimensional surrogate
to approximate the system’s behavior via training input-output mappings offers a cheaper modelling approach to prediction
and uncertainty quantification. For example, a simplified cardiac surrogate model inferred from noninvasive imaging via
cardiac magnetic resonance facilitates a low-resolution approximation to simulate the biomechanical system associated with
myocardial infarction for prognosis and risk quantification [1], [2]. Such surrogates can be pre-trained using representative
simulated data, allowing faster inference upon a patient’s arrival at a clinic [3]. Accurate pathology identification requires a
model with multiple biomarkers [4], thus necessitating flexible multivariate methods such as Deep Gaussian processes (DGPs)
and multivariate spline-based methods to estimate the resultant complex multidimensional surfaces.

Gaussian Processes (GPs) are non-parametric multivariate models commonly used as low-cost surrogates for classification,
regression and optimization problems in clinical settings when uncertainty quantification is desired [5], [6]. They provide
accurate predictions for well-behaved data; however, real-life systems often violate the standard GP assumptions of stationarity
and isotropic covariance and smoothness. Separable GPs avoid the isotropy assumption by partitioning the covariance kernel
into a product of separate covariance kernels for each input dimension, allowing anisotropic modelling [7], [8].

Deep Gaussian processes (DGPs) further relax GP assumptions through a hierarchical structure, wherein an unobserved
latent inner GP layer feeds an output into an observed outer GP layer. The structure introduces flexibility by facilitating non-
linear warping and rotation of the original input space while a latent separable GP layer enables anisotropic modelling [9], [10],
improving robustness and predictive accuracy for challenging surface dynamics that violate standard GP assumptions [11].

chain Monte Carlo (MCMC), requiring many matrix inversions whose computational complexity scales with sample size,
posing a computational challenge for large datasets. Computational requirements can be reduced through the Vecchia sparse
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The flexibility from an additional GP layer necessitates tuning more hyperparameters which may be estimated through Markov



covariance matrix approximation, which restricts the covariance associations to local data points, affording faster computation
and facilitating modelling large samples while reducing predictive accuracy [10]. To evaluate whether DGPs are worth their
computational cost, and, furthermore, how the Vechhia approximation limits prediction accuracy, their performance must be
assessed against competing approaches such as multivariate spline-based methods.

Bayesian multivariate spline-based methods are common semi-parametric approaches to model complex surfaces [12].
They approximate a target surface through tensor products of piecewise polynomials defined over local intervals. The
multivariate spline coefficients are estimated from observations given a prior distribution, and posterior distributions allow
for greater quantification. Bayesian multivariate spline-based methods can model challenging surfaces through flexible
implementations such as allowing smoothing parameters to vary across input dimensions to facilitate modelling anisotropic
surface estimates. The flexibility and powerful predictions of multivariate spline-based methods make them a good comparative
approach to evaluate the effectiveness of DGPs.

Previously, Bach and Klein (2022) [12] evaluated modern Bayesian multivariate spline-based methods. This paper extends
their work by evaluating the predictive accuracy and computational efficiency of DGPs compared to multivariate spline-based
methods. The accuracy and efficiency for estimating four-dimensional isotropic and anisotropic smooth surfaces of DGPs is
compared to standard GPs, separable GPs and Bayesian multivariate spline-based methods across various sample sizes.

2. Methods
The methods considered are trained on an observation dataset D = {X,y} of inputs X = {x𝑖}𝑁𝑖=1, x𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖, 𝑝), and

noisy outputs y = (𝑦1, ..., 𝑦𝑁 ) for sample size 𝑖 = 1, ..., 𝑁 . The target function y = 𝑓 (X) is estimated as the predictive mean
function ŷ = 𝑓 (X).

2.1. Gaussian Processes
A Gaussian process (GP) defines an infinite set of jointly multivariate Gaussian random variables. GPs are non-

parametric probabilistic machine learning models trained on D with multivariate Gaussian y generating a predictive mean
function ŷ = 𝑓𝐺𝑃 (X) ∼ N (𝑚(X),K + 𝜎2

𝑛I) for prediction and uncertainty quantification in regression and classification [8],
[13]. Here, the mean is assumed to be 𝑚(X) = 0 for simplicity. In the Bayesian framework, the GP prior over functions
is multivariate Gaussian and prior belief about covariance structure and smoothness is encoded through a kernel function,
K = 𝑘 (x, x′; 𝜽), given hyperparameters 𝜽 , which generates a positive semi-definite covariance matrix. When 𝑓 (X) is expected
to be smooth, the squared exponential kernel,

𝑘 (x, x′) = 𝜎2
𝑓 exp

(
− ||x − x′ | |2

2ℓ2

)
,

is a common choice. This has three hyperparameters, 𝜽 = (ℓ, 𝜎2
𝑓
, 𝜎2

𝑛), lengthscale, ℓ, models the decay in correlation between
points as distance increases, controlling the smoothness versus ‘wiggliness’ of GP random variables. A constant lengthscale
imposes the assumptions of isotropic correlation and stationarity. Signal variance, 𝜎2

𝑓
, models variance within 𝑓𝐺𝑃 (X),

controlling GP random variables amplitude and noise variance, 𝜎2
𝑛 , models iid Gaussian additive noise within the data. 𝜽 is

typically learned from the data by minimizing the negative marginal likelihood function

− log 𝑝(𝜽; y,X) = 1
2

y⊤(K + 𝜎2
𝑛I)−1y + 1

2
log |K + 𝜎2

𝑛I| + 𝑁
2

log(2𝜋).

This closed-form expression requires (K + 𝜎2
𝑛I)−1, with computational complexity required for inversions growing in

O(𝑁3), which presents challenges for large samples. This computational demand can be reduced by the Vecchia approximation
for the covariance matrix [14]. The Vecchia approximation requires, possibly randomly, ordered data. It conditions x𝑖 only on
the𝑚 << 𝑛 nearest neighbours earlier in the ordering. This induces a sparse covariance structure of conditionally independent
non-neighbour pairs, reducing the complexity of inversions to O(𝑁𝑚3) [10]. The upper-lower Cholesky factorisation of K is
used to estimate 𝑦̂𝑖 = 𝑓𝐺𝑃 (x𝑖) for more sparsity [15]. Sparse covariance approximations facilitating larger samples [14], [16]
often provide reasonable mean estimates, but poorer uncertainty quantification from lost covariance information [17].
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2.2. Separable Gaussian Processes
Separable GPs avoid the isotropy assumption by partitioning the input space into up to 𝑝 = 𝑑𝑖𝑚(X) ≥ 2, with separate

hyperparameters 𝜽𝑑 in each dimension [8]. The covariance kernel is a product of kernels for the 𝑝 segments:

𝑘 (x, x′) =
∏𝑝

𝑑=1
𝑘𝑑 (x, x′)

where the d-th kernel, 𝑘𝑑 (x, x′), depends only on the inputs (x, x′) of the subset 𝑑. Estimating a larger number of hyperpa-
rameters requires greater computation, but is not prohibitive compared to similar methods [8]. Separable GPs circumvent the
isotropy assumption; however, their implementation is inflexible for target surfaces that exhibit complex dynamics.

2.3. Deep Gaussian Processes
Deep Gaussian Processes (DGPs) extend 1-layer GPs through a hierarchical structure of GP input-output mapping [11].

A two-layer DGP feeds an input through an unobserved latent inner separable GP layer 𝑓𝐺𝑃𝑊
(X), whose outputs then feed

into the observed outer layer 𝑓𝐺𝑃𝑌
(W) with an output equivalent to a standard GP:

W = 𝑓𝐺𝑃𝑊
(X) ∼ N (0, 𝐾𝝓 (X,X)) 𝑓𝐺𝑃𝑌

(W) ∼ N (0, 𝐾𝜽 (W,W) + 𝜎2
𝑛I)

where W is an 𝑛 × 𝑝 matrix whose columns correspond to the 𝑝 input dimensions of the latent space while 𝐾𝝓 and 𝐾𝜽

are the inner and outer kernels with hyperparameters 𝝓 and 𝜽 respectively. The separable latent layer facilitates anisotropic
modeling while performing non-linear transformations warping and rotating X, allowing DGPs to flexibly model challenging
non-stationary dynamics [18].

The posterior predictive distribution can be taken by marginalising over the inner layer. However, this tends to be
analytically intractable; therefore, MCMC is usually used to approximate the posterior distribution. For example, the
approach we consider [10], [19] leverages a routine of elliptical slice sampling [20] of the latent layers and the Metropolis-
Hastings algorithm within a Gibbs sampling routine to approximate the posterior hyperparameters. This requires many matrix
inversions, posing computational challenges for even moderately sized training samples; thus, the Vecchia approximation
may be implemented similarly to 1-layer GPs [9]. Due to their flexibility and efficiency through the Vecchia approximation,
DGPs have demonstrated good predictive accuracy when modelling multidimensional surfaces that violate the standard GP
assumptions [11]. To evaluate DGP performance in practice, we must consider their predictive accuracy and computational
efficiency compared to competing methods such as commonly used Bayesian multivariate spline-based methods.

2.4. Bayesian Multivariate Spline-Based Methods
Bayesian multivariate spline-based methods estimate 𝑓 (X) through tensor products of piecewise polynomials defined

over local intervals which can model the shape and smoothness. In the Bayesian perspective, given a multivariate spline
coefficient prior and observations, the resultant posterior distribution over potential multivariate splines provides uncertainty
quantification. The predictions are taken as an average of the potential multivariate splines, weighted by their posterior
probability. We consider a series of multivariate spline-based methods, given in bold, initially compared by Bach and Klein
(2022), who developed a novel adaptive Metropolis-Hastings (MH) algorithm to update the smoothing coefficient sampler.
The methodology is tailored to modelling anisotropic smooth multidimensional surfaces through one-dimensional multivariate
splines, allowing smoothness to vary across dimensions. The smoothing coefficient prior used are inverse-Gamma (BK-IG),
Weibull (BK-WB) and Weibull with prior scaling (BK-WB-PS) then estimates its posterior distribution through adaptive MH.

These models were evaluated against the following competing Bayesian multivariate spline-based methods, which may
be limited in modelling anisotropic, high-dimensional, or large datasets. Jagam [21] uses the R package mgcv [22] for mixed
generalised additive models with automatic smoothness estimation with the MCMC sampler JAGS [23], which is effective
for two-dimensional smoothing, but has prohibitive computation costs in higher dimensions. The R package Rstanarm
[24] provides a similar implementation with an alternative roughness penalty that also lacks predictive accuracy and is
computationally inefficient when 𝑝 > 2. Bamlss [25] uses slice sampling with a stepping out procedure [26] to estimate
smoothing coefficients for each dimension; however, it is similarly impractically slow when 𝑝 > 2. An implementation in the
R package BayesX [27], [28] models anisotropy by dividing the training data into two isotropic groups. Although it is faster
than the other methods when 𝑝 > 2, it cannot capture higher-dimensional anisotropic surface dynamics. The BK-WB-PS
approach tended to outperform the prediction accuracy and computational efficiency of the comparative methods and therefore
sets the performance benchmark for comparison with DGPs.
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3. Simulation
3.1. Isotropic and Anisotropic Target Functions

We follow Bach and Klein’s (2022) procedure, by simulating y ∼ 𝑓𝑔 (x𝑖), 𝑔 = {1, 2} from training inputs, sampled
uniformly in x𝑖 ∈ [0, 1]3 and y with variance 𝜎2 = 0.52 for 10 replicates in 𝑁 = {100, 250, 500, 1000} as the sample
size alters the interpretation of signal-to-noise [29]. An isotropic target function 𝑓1(x𝑖) = sin(2𝜋 | |x𝑖 | |2), where | |x𝑖 | |2 is
the L2 norm euclidean distance between the i-th observation, 𝑖 = {1, ..., 𝑁}, and an anisotropic target function 𝑓2(x𝑖) =

sin(2𝜋
√︃

3𝑥1 + 𝑥2
2 + 𝑥

3
3/3) were estimated using standard/separable GPs, DGP and multivariate spline-based methods. The

prediction accuracy was measured as the log-mean squared error, logMSE = log
(

1
𝑛

∑𝑛
𝑘=1 (𝑦𝑘 − 𝑦̂𝑘)

2
)
, 𝑘 = {1, .., 1000},

between the prediction 𝑦̂𝑘 and the true value 𝑦𝑘 = 𝑓𝑔 (x𝑘).

3.2. Model Specifications
Using the R package deepGP [19], the standard/separable GPs and DGP’s were fitted with a squared exponential kernel, as

𝑓1(x) and 𝑓2(x) are smooth. Models implemented without the Vecchia approximation are referred to as “full GPs/DGPs”, and
those implemented with the Vecchia approximation are “approx GPs/DGPs”. Full standard/separable GPs were implemented
for 𝑁 = {100, 250}; approx standard/separable GPs were implemented for 𝑁 = {500, 1000}. Full DGPs were implemented
for 𝑁 = {100, 250} and approx DGPs were implemented for 𝑁 = {100, 250, 500, 1000} to assess the impact of the Vecchia
approximation on DGPs in low samples. The approx GPs and DGPs were implemented with 𝑚 = 10 the default in deepGP.
However, this resulted in logMSE close to 0 for 𝑓2 at 𝑁 = 1000, so these replicates were rerun using 𝑚 = 20 but with little to
no improvement and presented.

The posterior distributions of 𝜽 and 𝝓 were approximated three times for each replicate to assess convergence, with
initialisations 𝜎2

𝑛 = 0.001, ℓ = 0.1 for standard kernels, ℓ = (0.1, 0.1, 0.1) for separable kernels. MCMC chains ran between
40,000 and 200,000 iterations depending on convergence diagnostics. The between-chain convergence was assessed using
Gelman-Rubin 𝑅̂ [30] and the within-chain stationarity using Geweke [31] and Heidelberg diagnostics [32]. MCMC runs
were stopped when diagnostics indicated satisfactory convergence and stationarity. However, approx DGPs tended to indicate
non-convergence of inner lengthscales with convergence for outer lengthscale and noise. In these cases, MCMC runs were
continued for 10,000 iteration chunks and convergence was assessed. This was repeated until either the total computation time
reached approximately 10 hours or 200,000 iterations. For stationary chains, thinning was determined by the lag at which
the autocorrelation function (ACF) was non-significant. The MCMC chain was then burned-in to leave an inner lengthscale
effective sample size (ESS) of 100. However, for poorly mixed chains, a subjective decision, informed by the ACF and
convergence diagnostics, about burn-in and thinning was made to balance stationarity and ESS of the inner lengthscale. Since
individual models did not converge satisfactorily, predictions for each replicate were taken from all three instantiations and the
average logMSE per replicate was calculated. The deepGP package takes a point estimate, 𝑓𝐺𝑃 (x∗), at an unknown location,
x∗, as the mean of the predictions for each draw of the posterior distribution.

4. Results
4.1. Prediction Accuracy

Figure 1 shows that full DGPs tended to outperform other methods. In contrast, approx DGPs tended not to offer a
predictive advantage over the best multivariate spline-based methods, with accuracy collapsing for 𝑓2 at 𝑁 = 1000. Full
standard and separable GPs tended to perform similarly to the best multivariate spline-based methods, while approx standard
and separable GPs were less accurate. Assessing the Vecchia approximation, Welch’s t-tests [33] for the logMSE of full and
approx DGPs in Table 1 shows full DGPs have significantly lower mean logMSE for 𝑁 = 250 after Bonferroni correction.

Table 1: 95% confidence intervals for the difference in mean logMSE of full and approximate DGPs for 𝑓1 and 𝑓2 at
𝑁 = {100, 250} and corresponding p-values.

𝑓1 𝑓2
N 95% CI p-value N 95% CI p-value
100 (-0.85, -0.02) 0.04 100 (-0.37, 0.10) 0.24
250 (-0.68, -0.20) < 0.01 250 (-0.88, -0.28) < 0.01
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Fig. 1: The logMSE plot for 𝑓1 and 𝑓2 taken directly from Bach and Klein (2022) is altered to include the full and approx
standard/separable GP, and DGP results, separated by a red line. The multivariate spline-based methods were implemented
using {5, 10} dimension marginal basis multivariate splines, with the suffixes -5 and -10 respectively, except for Bamlss and
Jagam due to excessive runtime for 10-dimension marginal basis multivariate splines. Full and approx standard/separable GP
results are plotted in the same column for parsimony, 𝑁 = {100, 250} are full and 𝑁 = {500, 1000} are approx. The boxplots
of GPs/DGPs denote a distribution of mean logMSE across 10 replicates calculated as described in Section 3.2.

4.2. Computational Efficiency
The BK-WB-PS-10 approach tends to outperform the computational efficiency of other multivariate spline-based methods,

with better predictions. Therefore, it is the performance benchmark. The posterior ESS and system computation time for
1,000 MCMC iterations of full and approx standard/separable GPs and DGPs, and BK-WB-PS-10 have been evaluated. The
models were trained on inputs sampled uniformly in x𝑖 ∈ [0, 1]3 and outputs y ∼ 𝑓𝑔 (x𝑖), 𝑔 = {1, 2}, with 𝜎2 = 0.52 and
𝑁 = 250, using R version 4.3.2 [34] on an Apple Mac laptop running on macOS Sequoia, Version 15.1, Build 24B83 with an
Apple M1 Pro chip and 8 CPU cores, 14 GPU cores and 16GB RAM [35]. The difference in system time immediately before
and after the computation, and the mean ESS are presented in Table 2.

The full standard/separable GPs, approx DGPs and BK-WB-PS-10 computation times have the same order of magnitude,
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Table 2: The system computation time (seconds) for 1000 MCMC iterations and resulting posterior distribution effective
sample size, averaged over the input dimension, of the primary interest hyperparamers: lengthscale for standard/separable
GPs, inner lengthscale for DGPs and smoothing coefficient for BK-WB-PS-10.

Model Mean Effective Sample Size Computation Time (s)
𝑓1 𝑓2 𝑓1 𝑓2

Full GP 69 61 25 25
Approx GP 41 63 3 3
Full Separable GP 111 92 51 51
Approx Separable GP 87 61 5 5
Full DGP 39 22 418 419
Approx DGP 13 17 40 42
BK-WB-PS-10 1000 918 47 50

with approx standard/separable GPs approximately 1/10th smaller and full DGPs approximately 10 times larger. Inspecting
ESS, BK-WB-PS-10 has near perfect sampling efficiency, with ESS an order of magnitude greater than the next most efficient
method, the full separable GP, and two orders of magnitude greater than the least efficient method, the approx DGP. Trace plots
and posterior histograms were seen to indicate that the BK-WB-PS-10 sampler reached stationarity within 1000 iterations,
while all GP/DGP methods indicated non-stationarity. These metrics show that BK-WB-PS-10 is the most efficient approach,
requiring fewer MCMC iterations and less computation time than the GP/DGP methods to map out the posterior distribution.
Additionally, full GPs/DGPs have more efficient sampling, but require substantially longer computation.

5. Discussion
We compared predictive accuracy and computational efficiency of DGPs and Bayesian spline-based methods [12].

Evaluating accuracy finds that full DGPs can surpass the predictive performance of standard and separable GPs and spline-
based methods, while requiring substantially higher computational investment. That DGP performance was greater than
standard and separable GPs for both 𝑓1 and 𝑓2, indicates that DGP’s warping and rotating inputs between layers enhanced
flexibility beyond simply an anisotropic covariance structure. Greater variability in DGP prediction accuracy compared to
standard/separable GP may be linked to the hierarchical structure, as the prediction error in the inner layer is amplified in
the outer layer. Additionally, the increased flexibility may impact how random noise influences the number of iterations
required for MCMC converge [36]. Full DGPs were powerful in small samples, but the high computational cost prohibits their
applicability for large samples, which may limit their use as a low-cost surrogate in clinical settings requiring fast predictions.

In larger samples, approx DGPs showed little to no advantage over the best multivariate spline-based methods while
slightly outperforming standard/separable GPs. The relative accuracy of approx DGPs degraded with increasing sample size
and collapsed for the largest anisotropic sample, where BK-WB-PS-10 offered a more accurate and cheaper approach. This
work aligns with previous conclusions that DGPs offer a powerful approach to simulating smooth surfaces [37], [38] while
the Vecchia approximation facilitates larger sample simulations but restricts predictive accuracy [9].

Compared to full DGPs, in smaller samples, approx GP/DGPs’ exhibited poorer MCMC mixing with inner lengthscales
rarely converging, whereas noise and outer lengthscale indicated no non-convergence within low 10,000’s of iterations,
suggesting that the sparce covariance contributes towards non-convergence. This was exacerbated in larger samples with
increasingly multimodal posterior distributions, resulting in the sampler getting stuck in suboptimal modes or transient
behavior between local optima. Poor inner hyperparameter convergence is a persistent problem throughout other hierarchical
machine learning methods, such as neural networks [39], [40]. A deep analysis to assess long-term convergence issues would
require longer MCMC runs (e.g., 1,000,000 iterations), though this may push beyond practicality.

Future work to adapt the MCMC sampler may provide improvements. For example, introducing a simulated annealing
mechanism into the sampler may promote more efficient convergence to a posterior global optimum without exploring low
likelihood regions for larger datasets [41]. Potential improvements may also be found by using a hierarchical Vecchia
approximation for covariance [42]. This approach is tailored for larger samples and extends the Vecchia approximation by
retaining some global covariance structure of a few far away data points in the sparse matrix. This was successfully applied
to standard GPs [42] and may improve the predictions and convergence of DGPs. Additional avenues to improve the DGPs
worth consideration may be inspired by nearest-neighbour GPs [43], [44] and the Vecchia-Laplace approximation for GPs
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[45], which have shown promise in 1-layer GPs but they are yet to be applied to DGPs.
The flexibility to warp and rotate the training data between hierarchical GP layers afforded DGPs a predictive advantage

over standard and separable GPs and Bayesian multivariate spline-based methods in small samples. However, the considerably
greater computational requirements necessitating the Vecchia approximation for moderate to large sample sizes limited DGPs
usefulness as Bayesian multivariate spline-based methods provided cheaper, more accurate predictions. Future work to adapt
the posterior sampling mechanism or alter the sparse covariance Vecchia approximation may offer progress.
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