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Abstract - Mathematical models allow us to simulate complex systems, whose behaviour depends significantly on their underlying
parameters. However, direct parameter inference of these systems typically involves repeatedly computing numerical solutions.
Consequently, reducing the computational burden associated with parameter estimation is crucial for enhancing the practicality of these
models. Statistical emulators present a promising solution to this issue, as they approximate mathematical models and substantially reduce
computational demands. Despite the potential benefits of emulators, selecting an appropriate emulation strategy remains challenging,
primarily due to issues such as high dimensionality, sparse data and correlated outputs. In this study, we assess the effectiveness of
various emulation strategies for parameter inference under different data scenarios. Our evaluation encompasses statistical models based
on standard Gaussian Processes, variational Gaussian Processes, deep kernel learning, deep Gaussian Processes, and deep neural
networks. We construct several simulated data sets and analyse the parameter estimation accuracy of these models under different
conditions, including output independence, different input-output dimensionality ratios and data sparsity. Our results demonstrate that
the multi-output Gaussian Process consistently achieves superior parameter estimation accuracy compared to other Gaussian Process
variants and deep neural networks, particularly in high-dimensional complex systems with multiple dependent outputs, and maintains
greater stability in scenarios with sparse data. These findings give insight into emulation strategies applicable to parameter estimation of
high-dimensional complex systems and provide a foundation for the future development of real-time parameter estimation in practical
applications. 
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1. Introduction
In recent years, advances in mathematical modelling have enabled researchers from various fields to develop

increasingly sophisticated models for analysing complex systems. Examples of these developments include biomechanical
heart models governed by non-linear constitutive laws [1] and geological models describing landscape evolution [2]. In such
studies, the system equations combined with their numerical implementations are commonly called simulators [3]. Typically,
the outputs of the simulator are solutions to these equations, representing observations of the studied system. Understanding
and predicting the behaviour of the system depends heavily upon the parameters within these equations, which generally
carry explicit practical interpretations. For example, in biomechanical heart modelling, parameters are frequently associated
with the physiological characteristics of myocardial tissue, and their rapid and accurate estimation facilitates the timely
detection of cardiovascular diseases such as myocardial infarction [4]. Consequently, real-time estimation of model
parameters has become an important research priority.

Parameter estimation of these systems often involves comparing measurable data with simulator outputs, employing an
optimisation algorithm to identify parameter values that minimise the discrepancy between the two. In mathematical sciences,
this process is referred to as inverse problem solving. However, complex mathematical simulators are typically unsuitable
for direct application in real-time decision-making contexts. This limitation is primarily because most differential equations
do not have closed-form analytical solutions, necessitating repeated numerical computations for each forward simulation.
The computational cost per solution depends on the complexity of the model and can take anywhere from a few minutes to
several hours per run. Estimating even a single parameter often demands hundreds or thousands of repeated simulations of
the mathematical model, and the resulting high computational cost makes it challenging to implement real-time estimation.
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To address these computational challenges, employing low-cost statistical emulators as approximations of
computationally expensive simulators has become a widely adopted strategy [5]. These emulators can be pre-trained using
previously generated simulation data, enabling their predicted outcomes to replace direct simulator computations. Once
trained, emulators can be evaluated rapidly, significantly accelerating the estimation process. Consequently, researchers are
able to perform parameter estimation in real-time applications with significantly reduced computational demands. A variety
of statistical regression and deep learning approaches have been explored to develop such emulators. Gaussian Processes
(GPs), in particular, have been extensively utilised due to their flexibility as non-parametric models [6] In studies involving
inverse estimation of material parameters for left ventricular biomechanics, both GP-based models and neural network
models have been shown to facilitate accurate parameter estimation [7].

While statistical emulators significantly enhance the efficiency of parameter estimation in real-time applications, their
effectiveness heavily depends on selecting an appropriate emulator structure. When analysing increasingly complex systems,
standard emulators often fail to adequately represent intricate relationships inherent in high-dimensional input-output
mappings, meaning that it is necessity to consider more advanced models capable of addressing these limitations. Although
deep learning models can address such complexity, they often have the drawback of being difficult to tune for suitable model
structures. Standard GPs often struggle to achieve a balance between training efficiency and model flexibility. To overcome
these limitations, several GP-based extensions have been proposed, each offering distinct advantages. For example, Deep
Kernel GPs integrate the non-parametric flexibility of GPs with the representational capabilities of deep learning, enhancing
the ability of the model to represent complexity without requiring extensive adjustment of kernel structures [8]. Variational
GPs combine variational inference with evidence lower bound optimisation, leading to improved predictive accuracy
alongside reduced computational complexity [9]. In addition, Deep GPs extend the application range of GPs, enabling it to
effectively handle tens of billions of data points and excel at regression problems with large data sets [10].

This study evaluates a variety of emulation strategies for solving inverse problems for complex systems, including
different types of multi-output GPs, combinations of single-output GPs, and deep learning models. Previous studies on
parameter estimation for biomechanical systems have shown that, among various statistical models, GP-based approaches
have demonstrated outstanding performance in addressing inverse problems [7]. However, most of these emulation strategies
have paid relatively limited attention to the correlations among output variables and capturing complex interdependencies.
In our study, we create simulation data with complex multi-dimensionality by controlling the correlation coefficients between
output variables, the ratio of input to output dimensions, and data sparsity. These datasets present more complex
interdependencies between dimensions, which will allow us to assess the accuracy of parameter estimation under different
strategies and explore their applicability. 

2. Methodology
2.1. Emulator

Emulators, M̃, often referred to as surrogate models, can be used to accelerate computations by approximating the output
of a complex mathematical model, M. Typically, emulators based on statistical methods are trained using data generated
beforehand by numerically solving the mathematical model. The time taken to produce these solutions is not included in the
computational cost of the real-time solutions to the inverse problem, as once trained, repeated solving of the mathematical
model can be avoided by using the emulator predictions. Given that solving the original model is computationally intensive,
repeatedly solving it as required by parameter inference tasks would quickly exceed practical time constraints, however, the
simulator can efficiently be run hundreds or even thousands of times. This capability makes it possible to implement fast
parameter estimation in high-dimensional complex problems.

2.2. Design of Simulations
When building an emulator, M̃, it is essential to collect a sufficiently large and systematically organized dataset that

includes both input parameters and their corresponding output variables for training. Ideally, the input parameters should be
densely sampled across the parameter space to ensure that the emulator accurately captures the system’s behaviour
throughout the entire domain. In practical applications, data are typically generated by numerically solving the mathematical
model, M, which simulates these systems. Based on this process, an appropriate dataset D should be designed to train the
emulator. The dataset D consists of input parameters 훉 and output y, D = { 훉i,yi }, for i = 1,2,…,N, where N denotes the size
of the dataset.
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2.2.1 Input Generation
A straightforward approach to obtaining parameter combinations is to sample uniformly across the parameter space.

However, uniform sampling may result in multiple samples adopting near-identical parameter values in particular
dimensions, which can reduce the informative content of the dataset, especially if the corresponding output is relatively
insensitive to those parameters. Sobol sequences and Latin hypercube sampling can effectively alleviate this issue through
deterministic rules and hierarchical strategies, respectively. In high-dimensional contexts, Sobol sequences are particularly
advantageous as they mitigate correlation in the distribution of sampled points, thereby ensuring stability [11]. This study
employs Sobol sequences to generate the input parameters. Each set of generated input parameters 훉i must satisfy 훉i ∈
a,b d,i = 1,2,…,N, where d is the dimensionality of the input space and a,b  is the range of parameters.

2.2.2 Output Generation
In most studies, the outputs of the dataset are typically obtained by designing the parameter combination and then solving

the simulator. In this work, simulated data can be used to better demonstrate different scenarios, allowing for more
comprehensive testing. Specifically, we generated multiple datasets using different multivariate Gaussian distributions which
can model the correlation between outputs. The mean of these multivariate Gaussian distributions is set to 0, and the
covariance matrix is K. After obtaining the input set 횯, the covariance matrix can be generated using a radial basis function
(RBF) kernel k 훉,훉' , which is given by the following formula:

k 휽,휽' = σ2 exp − 1
2

휽 − 휽'

l
2 , (1)

where θ and θ' represent different inputs, l represents the length scale for each input dimension, and σ2 is the variance
parameter. l and σ2 are randomly selected for each different covariance matrix. We can sample the intermediate variable
finner from this multivariate Gaussian distribution, which is expressed as follows:

finner ∼  퓜퓥퓝 0,K . (2)

The sampling process is carried out in m independent distributions and then combined into a single matrix, Finner ∈ ℝN × m,
the final output Y ∈ ℝN × m is obtained through the weight matrix W

Y = FinnerW, (3)

where the design strategy of the mapping matrix W ∈ ℝm × m determines the relationship between output variables Y. We set
W as a diagonal matrix to give independent outputs, with its diagonal elements randomly sampled from 풰 0.5, 1 . To
simulate correlations among outputs, we introduce off-diagonal elements to the above diagonal matrix, where these off-
diagonal elements are sampled from 풩 0, 1 .

2.3. Parameter Estimation
Building on the dataset described in the preceding sections, the emulator is trained to approximate the outputs of the

mathematical model. Once trained, the emulator can be employed for parameter estimation by minimising the discrepancy
between the test data ytest and the emulator prediction M̃ θ . The estimate of the parameter vector θ̂ is obtained by solving
the following optimisation problem:

θ̂ = arg min
θ

l θ|M̃,ytest , (4)

where l θ|M̃,ytest  indicates the loss function between the observed value and the predicted value, which is measured using
the Euclidean distance. The Adam global optimisation algorithm is used to minimise the loss function. Compared to the
traditional stochastic gradient descent method, the Adam algorithm can converge more quickly using adaptive estimates of
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the first and second moments [12]. At the same time, we use multiple starting points to explore the parameter space, thereby
reducing the possibility of getting stuck in a local minima.

3. Emulation Methods
Emulator strategies are often divided into local and global models. The local models aim to accurately fit the variations

around the observation point. This approach significantly reduces computational complexity by fitting a separate GP model
using a local training dataset with the nearest neighbours selected for ytest. In contrast, global models rely on training the
emulator on the full dataset, with approximation techniques often used to reduce the computational cost associated with this
approach.

3.1. Local Models
3.1.1 Standard GPs

GP regression is a powerful non-parametric Bayesian technique. Priors are placed directly on the function space,
providing a flexible framework that naturally allows predictions to incorporate a measure of uncertainty [6]. However, the
computational complexity of the standard GP model in a dataset of size n is approximately O n3 , which increases cubically
with the data. This high complexity can be avoided by matching the model to the local dataset, as the complexity of the model
will be kept within the size of the local dataset.

The simplest single-output local GP (hereafter L.GP) treats each output variable independently. When applied to a multi-
output dataset, although this approach reduces the computational complexity, it ignores the potential correlations between
the output variables and requires a separate model to be established for each output variable. Formally, a single-output GP
for a stochastic process f θ  can be written as:

f θ ∼ GP m θ ,k θ,θ' , (5)

where f θ  represents the prediction of y, θ and θ' represent different input vectors, m θ  is the mean function, and k θ,θ'

is the covariance function. In this work, a constant is used as the mean function and an automatic relevance determination
(ARD) RBF is used as the covariance function. This single-output model independently models each output and cannot take
advantage of the correlation between multiple outputs.

An extension that also applies to local datasets is the multiple output GP (L.MGP), which can capture the relationship
between multiple tasks by incorporating an additional covariance structure. Specifically, the covariance takes the form of:

k θ,i , θ',j   =  k θ,θ'   ×  ktasks i,j , (6)

where i and j denote different outputs and ktasks i,j  denotes the correlation between outputs. By exploiting this covariance
matrix, the L.MGP framework can effectively model the correlation between outputs.

3.1.2 Deep Kernel Learning (DKL)
Deep Kernel Learning (DKL) introduces a deep kernel by combining a deep neural network (DNN) with a GP. This

approach retains the GP’s ability to quantify prediction uncertainty while enhancing its capacity to model complex data
patterns through deep feature extraction. Experiments have shown that it outperforms the traditional GP and stand-alone
DNN in small samples and high-dimensional outputs [8]. The covariance matrix in this structure is expressed as:

k θ,θ'|퓵 →k g θ,w ,g θ',w |퓵,w , (7)

where 퓵 is the hyperparameter of the base kernel and  g θ,w  is a nonlinear mapping given by the neural network. This
kernel function structure can be combined with single-output and multi-output models, and is represented by L.DKGP and
L.DKMGP respectively.

3.2. Global Models
3.2.1 Variational Gaussian Processes (VGPs)
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Variational GPs (VGPs) extend the concept of sparse approximation by using a variational inference framework to
approximate the posterior distribution of the GP[9]. This approach optimises the variational parameters as well as the location
of the induced points and the model hyperparameters, providing a more flexible approximation that can balance
computational efficiency with modelling accuracy. The multi-output VGP is implemented by the Linear Model of
Coregionalization, which assumes that each output dimension is a linear combination of several latent functions:

ftask θ = ∑
i = 1

Q

aigi θ , (8)

where ai are learnable parameters, optimised along with the rest of the hyperparameters of the model. Q is the number of
potential functions used to compose each output and gi is a set of variational GP models.

3.2.2 Deep Gaussian Processes (DGPs)
Deep GPs (DGPs) are a hierarchical extension of variational GPs, designed to address the limitations of single-layer

GPs, which can model only a single non-linear relationship. DGPs retain the advantages of GPs, while offering greater
expressiveness, similar to how deep networks surpass generalized linear models [10]. Unlike DKL models with highly
parameterised kernels, DGPs require fewer hyperparameters, reducing the risk of overfitting. In this study, we construct a
two-layer DGP model with matching input and intermediate dimensions. Extending to higher layers would exponentially
increase training time and result in the covariance matrix to become non-positive definite, making the approach
computationally impractical.

3.2.3 Deep Neural Networks (DNNs)
Deep Neural Networks (DNNs) are highly flexible, parameterised learning models. They can be trained relatively

quickly, even on full datasets, and high prediction accuracy is often achievable by tuning the network architecture. In our
approach, we identified the network structure that yielded the best predictive performance using a sampled full dataset. A
validation set was then derived from this sample, and a forward neural network was constructed consisting of five fully
connected layers. ReLU activation functions and Batch Normalisation were applied between each layer.

4. Simulation Data
Based on the methods described in Section 2.2, we designed three experiments to evaluate the parameter estimation

performance of different emulation methods in different scenarios. Each experiment investigated the impact of output
correlation, dimensionality effects and data requirements on the estimation results. All experiments kept the same test set
size of 54 and generated 50 independent datasets to ensure robustness and reproducibility of the results.

4.1 Analysis of Output Correlation
To investigate how the correlation between output variables affects the accuracy of parameter estimation, we constructed

two datasets, one with highly correlated outputs and the other with independent output variables. In this experiment, we set
the input dimension to d =  3, the output dimension to p =  6, and the training set size to n =  2024. This setup limits the
training time and parameter estimation process to a reasonable time to demonstrate the advantages and disadvantages of
different emulation methods.

4.2. Output Dimensional Transformation
Considering that a higher output dimension will increase the complexity of emulator construction, while a lower output

dimension may not be sufficient to solve the inverse problem, we will fix the input dimension and gradually increase the
output dimension to generate different datasets. In this experiment, the input dimension is fixed at d =  5 dimensions, the
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output dimension p is gradually increased from 4 to 8. Since the increase in the number of input dimensions requires a
suitable increase in the size of the training set to better cover the parameter space, we set the training set to n =  4048. This
setting aims to explore the feasibility of parameter estimation under different input and output dimensions and to analyse the
best possible ratio between them.

4.3. Variation in Data Requirements
The balance between training data coverage and model complexity is also a factor to consider. We fix the input and

output dimensions d = 5,p = 6  and gradually reduce the size of the training set n from 4048 to 1024 to evaluate the impact
of data volume on parameter estimation performance. Through this experiment, we can quantify the parameter space
coverage requirements of different emulation strategies and provide practical guidance for experimental design in high-
dimensional environments.

5. Results
We generated three distinct dataset scenarios using the data generation methods described in Section 4. The approaches

outlined in Section 3 were then applied, and the corresponding parameters were estimated according to the procedures
detailed in Section 2.3. To evaluate the robustness of these methods, we repeated the entire process 50 times using newly
generated datasets. Finally, we computed the mean squared error (MSE) between the estimated parameter values and the
parameter values used to generate the data, for each repetition.

First, we use eight methods, four local and four global models, to assess the impact of output relevance on parameter
estimation tasks. The local models include single-output (L.GP) and multi-output (L.MGP) versions of the standard GP and
single-output (L.DKGP) and multi-output (L.DKMGP) models that incorporate Deep Kernel Learning. Meanwhile, the
global models comprise single-output (VGP) and multi-output (MVGP) Variational GP, Deep Gaussian Process (DGP), and
a baseline Deep Neural Network (NN). The results are presented in Fig. 1, which shows that the performance of all global
models is inferior to that of L.MGP. L.GP performs well on datasets with mutually independent outputs, but results in poorer
parameter estimation when the outputs are not independent. Moreover, the DKL-based methods do not exhibit notably
superior capabilities. 

Next, from the output-relevant dataset illustrated in Fig. 1, we select the three best-performing models for further
analysis, namely L.MGP (representing local models), MVGP (representing global models), and a DNN (as the baseline). We
then fix the input dimensionality (at d = 5) and gradually increase the output dimensionality. As shown in Fig. 2, enlarging
the output dimension alleviates the challenges of inverse problems, resulting in more accurate parameter inference. Notably,

Fig. 1: MSE of parameter estimation using different emulator methods across datasets where outputs are either independent or 
correlated. Different colors indicate whether the outputs are independent: Ind means the outputs are independent, whereas NInd 
indicates that the outputs are correlated. Method names with the prefix L. represent local methods, while those without a prefix 
denote global methods. The vertical dashed line separates local method results from global method results.
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once the output dimension surpasses a certain threshold, further increases do not lead to additional performance gains for any
of the three models. Table 1 summarises the results of carrying out t-tests on the MSE values for these methods under varying
output dimensions. The results indicate that when the output dimensionality is less than or equal to the input dimensionality,
there is no significant average performance difference among the three models. Only when the output dimensionality exceeds
the input dimensionality do GP-based emulation strategies outperform the neural network model.

Finally, as described in Section 4.3, we varied the training dataset size while keeping the input and output
dimensionalities fixed. The results in Fig. 3 indicate that reducing the training dataset size does not cause significant
performance degradation across models. The MSE distribution and mean fluctuations of GP-based models are smaller
compared to those of the DNN model.

6. Conclusion
This study evaluates and compares statistical emulation strategies for estimating multiple parameters in complex

systems, focusing on their performance under different conditions such as output correlation, input-output dimensionality

Fig. 3: MSE of parameter estimation using different methods across datasets with varying output dimensions, showing both the 
original (left) and log-transformed (right) results.

Table 1: P-values from the t-test conducted on the MSE of different methods, evaluated across datasets with varying output 
dimensionalities. Statistically significant differences in average MSE, at the 5 %  significance threshold, are indicated in bold.

Output Dimension
Models 4 5 6 7 8

L.MGP vs NN 0.342 0.280 <0.001 0.0271 <0.001
MVGP vs NN 0.976 0.566 0.0300 0.139 0.137

L.MGP vs MVGP 0.308 0.575 <0.001 <0.001 <0.001

Fig. 2: MSE of parameter estimation using different methods across datasets of varying sizes, with both the original (left) and log-
transformed (right) results
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ratio, and the amount of training data. Our analysis includes standard Gaussian processes, variational Gaussian processes,
deep Gaussian processes, deep kernel learning, and deep neural network models.

Our results show that multi-output Gaussian process models, in particular local multi-output Gaussian process (L.MGP),
consistently achieve superior accuracy in parameter estimation when applied to datasets with correlated outputs. Single-
output Gaussian process models excel with independent outputs, but are limited when dealing with correlated data due to
their inability to capture cross-dimensional dependencies. It is worth noting that deep kernel learning did not significantly
improve the performance of the emulator compared to the standard Gaussian process method in the scenarios we tested.

Further investigation of the dimensional effect shows that the accuracy of parameter estimation generally improves as
the output dimension is increased relative to the input dimension. However, beyond a certain threshold, further increases in
the output dimension no longer significantly improve performance.

In addition, we assess how variations in training dataset size affect emulator performance. The results demonstrate that
Gaussian-process-based approaches remain robust, maintaining stable estimation accuracy even with reduced dataset sizes.
In contrast, neural network models exhibit larger performance fluctuations, indicating greater sensitivity to data size.

Overall, the L.MGP model, the MVGP model, and the neural network model each offer promise for parameter inference
in complex systems. In some instances, GP-based methods match or surpass the accuracy of neural networks, while requiring
fewer structural adjustments. When local and global GP models achieve similar accuracy, the global approach is preferred,
since local models must be retrained for each test point, thereby increasing computational overhead. In future work, we plan
to incorporate Bayesian inference to more rigorously quantify and interpret parameter uncertainty, providing a more robust
framework for parameter estimation in complex systems.
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